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Abstract

Recordings of neural activity are key in our quest to understand one of the great mysteries of
our time, the brain. While in previous decades experiments recording from single to tens of
neurons a la Hubel and Wiesel yielded insights at the single-neuron level using trial-averaged
analyses, recent advances in technology have enabled simultaneous recordings of up to tens
of thousands of neurons over the course of hours or days. These larger datasets provide
neuroscientists with new opportunities to study large populations, or even multiple brain
areas, together as a whole. For example, neurons that were previously disregarded as noisy
or irrelevant due to confusing response properties are now considered important parts of
the whole. Additionally, buoyed by computational advances, neuroscientists have begun
analyzing single-trial recordings in addition to trial-averaged ones. Single-trial analyses
allow neuroscientists to investigate trial-to-trial variability (possibly resulting from changes
in attention or mental state) and are necessary when analyzing continuous recordings without
well-defined trial structure.

To make sense of this increasingly high-dimensional data, neuroscientists have turned
to a variety of supervised and unsupervised dimensionality reduction techniques. One
such unsupervised technique is Gaussian Process Factor Analysis (GPFA). GPFA is an
interpretable method that outperforms other similarly interpretable techniques (such as
principal component analysis and independent component analysis) in modeling spatial and
temporal correlations in population recordings. However, its applications have so far been
limited mostly due to its prohibitive computational complexity. In particular, it does not scale
well to datasets with more than ∼ 200 time bins. One way of circumventing this issue is to
break trial-structured recordings into shorter constituent trials. However, this ad-hoc strategy
limits the types of representations that GPFA can recover, and is not naturally applicable to
continuous recordings that do not have a well-defined trial structure.

In this thesis I develop two GPFA implementations with highly tractable time and space
complexities that scale near-linearly with the number of time-points. With these methods I
demonstrate applicability of GPFA to single stretches of data with upward of 105 time bins
(107 datapoints in total), much larger than previous attempts that were limited to 102 time
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bins (104 datapoints). I compare and demonstrate applications of these methods, and discuss
future directions.
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Chapter 1

Introduction

1.1 Motivation

The adult human brain contains upwards of 100 billion neurons so its dynamical state space is
of proportionally immense dimensionality [4]. Yet many of our day-to-day behaviors such as
navigation, motor control and decision making can be described in much lower dimensional
subspaces. Accordingly, recent studies across a range of cognitive and motor tasks have
shown that neural population activity can often be accurately summarized by the dynamics
of a “latent state” evolving in a low-dimensional space [12, 53, 11, 48, 21]. Inferring
and investigating these latent processes can therefore help us understand the underlying
representations and computations implemented by the brain [31]. To this end, numerous
latent variable models have been developed and used to analyze the activity of populations
of simultaneously recorded neurons. These models range from simple linear projections in
the form of principal component analysis (PCA) to sophisticated non-linear models using
modern machine learning techniques [33, 53, 24, 13].

A key goal in dimensionality reduction of population datasets is to infer the collective
timecourse of a set of latent processes from observed neural activity. Typical neural popula-
tion recordings consist of some measure of activity recorded over time in several hundred
neurons. Such activity can consist of spike times, voltage traces, or fluctuations in a calcium
indicator. In the case of spike times or voltages, preprocessing typically involves binning
action potentials with a given bin width, yielding integer spike counts.

Importantly, the continuous nature of behavior and cognitive processes suggests that
interpretable latent processes should be smooth in time. Neuroscientists have thus historically
first smoothed the binned data on ad-hoc timescales before secondly applying a dimension-
ality reduction technique (such as PCA, ICA, etc.) to the smoothed data [78]. This allows
information to flow across time (e.g. a spike at time t is expected to carry some information
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about the value of a latent process at time t±∆ for some range of ∆) and across neurons (a
given latent process is typically reflected in the activity of more than one neuron) to yield
more accurate, denoised inferences.

1.2 Utility of Gaussian Process Factor Analysis (GPFA)

Gaussian Process Factor Analysis (GPFA) is a dimensionality reduction technique that
combines these two steps, simultaneously smoothing and finding the lower dimensional
subspace that best encodes the neural activity (Figure 1.1; 79, 78). Combining these steps
enables direct learning of inherent dimensionality and the best smoothing parameters from
the data itself [78]. GPFA thus outperforms traditional two-step methods, and has yielded
insights into neural computations ranging from time tracking to movement preparation
and execution [53, 38, 79, 78, 1, 63, 61, 60]. Because GPFA is probabilistic, it allows
for extensions incorporating prior knowledge via specific choices of kernels: for example,
smoothness of the latent variables can be expressed using a squared exponential kernel,
oscillatory dynamics using a spectral mixture or cosine kernel, and dynamical structure using
a non-reversible kernel [54, 60].

Fig. 1.1 Two stage dimensionality reduction techniques vs. GPFA. This figure is reused
from [78] with permission from The American Physiological Society. (A) Two stage methods
(e.g. PCA, ICA) perform smoothing and dimensionality reduction in two sequential steps.
(B) GPFA performs smoothing and dimensionality reduction simultaneously, allowing the
parameters for both steps to be jointly optimized.
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Other methods exist for performing simultaneous dimensionality reduction and smoothing.
Latent Factor Analysis via Dynamical Systems (LFADS) in particular is a deep network
method that can currently outperform GPFA when trying to reconstruct aspects of behavior
from the inferred latents [64]. Poisson Linear Dynamical System (PLDS) is a non-kernel and
non-deep method that in certain cases can outperform GPFA when predicting spike-rates [46].
LFADS and PLDS both have many more parameters than GPFA models, and so are both
more data-hungry and less interpretable [64]. Interpretability has certain benefits (e.g. GPFA
assigns each latent a timescale—shorter timescales can correspond to within-trial variations,
whereas longer timescales can correspond to slower across-trial drifts reflecting e.g. task
engagement). Moreover, explicitly probabilistic methods enable principled quantitative
comparison of models with different numbers of latents and different numbers of parameters.

1.3 Mathematical background

1.3.1 Gaussian Processes (GPs)

Scalar Gaussian Processes (GPs) generatively model how output y ∈ R varies as a function
of some input t ∈ R:

f (·)∼ GP(000,k(·, ·)) (1.1)

yyy = f (ttt)∼N (000,ΣΣΣ) where Σi j = k(ti, t j) (1.2)

where ttt = {t1, . . . , tT} denotes a set of T input points and yyy = {y1, . . . ,yT} denotes the
corresponding set of T output points. The function k(t, t ′), is called the kernel function.
There are many possible kernel functions – a good overview is provided by [74, 20]. For the
purposes of this thesis, I will only consider stationary kernels, a family of kernel functions
k(t, t ′) that depends only on the difference t − t ′ between the input points. The squared
exponential kernel, also referred to as the Radial Basis Function (RBF) kernel is defined as
k(t, t ′) = exp

(
− (t−t ′)2

2ℓ2

)
, where ℓ is a characteristic lengthscale related to the average interval

between two zero crossings.
In neuroscience applications, the input dimension is time, and time points (and thus input

points) are equally spaced due to spike binning. As a result of this equal spacing and the
kernel stationarity, ΣΣΣ has equal values along its diagonals. Thus, ΣΣΣ in Equation 1.2 is a
symmetric positive definite matrix with Toeplitz structure (Figure 1.2A).
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Fig. 1.2 Gaussian Processes. (A) ΣΣΣ corresponding to the stationary RBF kernel evaluated at
a set of T = 5 equally spaced input points. (B) The Gaussian process prior (gray) encoded by
the kernel in A, along with data points (orange) that induce the posterior (blue) (Equations 1.4
and 1.5). Shading shows ±2 standard deviations from the mean.

Gaussian processes for regression

Gaussian processes can be used in a regression context, to model latent functions which are
observed noisily. Specifically, consider a function f (t) observed at a set of T input points ttt
with added Gaussian noise, resulting in data of the form yi = f (ti)+σnεi where ε ∼N (0,1).
By placing a GP prior (Figure 1.2B) over f , one is able to approach this regression problem
in a Bayesian manner. Gaussian processes have the nice property that conditioning can be
performed analytically. Specifically, one can infer the values fff ∗ of the underlying function
for any set of input points ttt∗ (which may or may not overlap with ttt) as follows. We begin by
extending Equation 1.2 to express the joint distribution of yyy and fff ⋆ as yyy

fff ∗

∼N
000,

K(ttt, ttt)+σ2
n III K(ttt, ttt∗)

K(ttt∗, ttt) K(ttt∗, ttt∗)

 (1.3)

where the σ2
n III term added to the kernel matrix K(ttt, ttt)i j = k(ti, t j) accounts for the observation

noise. Using the standard formula for conditioning in multivariate Gaussian distributions,
one can find the posterior mean and covariance of fff ∗ (Figure 1.2B):

E[ fff ∗|ttt,yyy, ttt∗] = K(ttt∗, ttt)[K(ttt, ttt)+σ
2
n III]−1yyy (1.4)

cov( fff ∗) = K(ttt∗, ttt∗)−K(ttt∗, ttt)[K(ttt, ttt)+σ
2
n III]−1K(ttt, ttt∗) (1.5)
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Fitting

Fitting a GP involves optimizing all parameters of the generative model, such as those of the
kernel (e.g. the lengthscale ℓ above) and the observation noise σ2

n , to maximize the marginal
likelihood for the data at hand:

logp(yyy|ttt) =−1
2

yyyT (KKK +σ
2
n III)−1yyy− 1

2
log|KKK +σ

2
n III|− T

2
log2π (1.6)

where KKK = K(ttt, ttt). Here, p(yyy|ttt) is called the “marginal likelihood” because it requires
marginalizing out the latent function f under its prior.

1.3.2 GPFA

Gaussian Process Factor Analysis (GPFA; 79, 78) is a generalization of the GP regression
setup introduced above that models the spatio-temporal structure of a function with more than
one output dimension (Figure 1.3). Where classical GP regression as presented above models
a scalar output function (e.g. a scalar time series), GPFA instead models a higher-dimensional
output yyy(t) ∈ RN .

Fig. 1.3 Gaussian Process Factor Analysis. (A) True generative latents (sampled from
Equation 1.7) are combined linearly via mixing matrices CCC into the (B) underlying true
activity distribution (Equation 1.8). Observations are sampled from this distribution with
variances RRR. (C-D) The hyperparameters (CCC,RRR,and, ℓi) are fit, and the (C) latent posterior
distribution (Equations 1.13 and 1.14) and the resulting (D) predictive posterior are inferred.
Shading shows ±2 standard deviations from the mean.
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Fundamentally the approach is the same as for scalar GP regression. One uses a GP prior
over a set of latent functions, and a linear Gaussian observation model, thereby inducing
a joint GP distribution over latents and observations (very much like the GP prior over f
coupled with the linear Gaussian noise model of Equation 1.3 induced a joint Gaussian
distribution over fff ∗ and yyy).

For GPFA, the notation is as follows. There are T time-points ttt ∈ RT , D latent variables
xxx(t) ∈ RD arising from D a priori independent latent Gaussian processes with underlying
kernels {k1, . . . ,kD}, and observations (neural data) from N neurons, yyy(t) ∈ RN . The latents
for each time-point can be stacked side-by-side in columns into a matrix XXX ∈ RD×T , and the
observations can be stacked into YYY ∈ RN×T . ỹyy ∈ RNT is shorthand for vec(YYY ) where vec(·)
stacks columns vertically. Note that this shorthand is different from that in [60] as I will
be using time-space Kronecker products where [60] uses space-time Kronecker products
(simply a notational difference in which term is on the lefthand versus the righthand sign of
the Kronecker product). IIIN denotes the N×N identity matrix, 111N denotes the ones vector of
length N, δi j is the Kronecker delta (1 when i = j, 0 otherwise), eeei is a unit vector of length
D with nonzero element at index i, and ⊗ is the Kronecker product.

Beyond the individual kernel hyperparameters, there is a mixing matrix, CCC ∈ RN×D, that
indicates how latents are combined into observations, a diagonal positive definite matrix of
observation noise variances, RRR ∈ RN×N , and a vector of neuron means, µµµ ∈ RN .

Given the notation above, the observations in GPFA are assumed to arise as follows
(Figure 1.3A-B):

xxxi(·)∼ GP(000,ki(·, ·)) (1.7)

yyy(t)∼N (µµµ +CCCxxx(t),RRR) (1.8)

The latent processes are assumed to be independent of each other:

k(xi(t),x j(t ′)) = δi jki(t, t ′) (1.9)

Thus, the temporal covariance (between two time-points) of the full vector of latents is
given by:

kxx(t, t ′) =
D

∑
i=1

ki(t, t ′)⊗ (eeeieeeT
i ), (1.10)

leading to the full spatio-temporal covariance of x̃xx

KKKxx =
D

∑
i=1

Ki(ttt, ttt)⊗ (eeeieeeT
i ). (1.11)
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As promised, this latent covariance coupled with the linear Gaussian observation model
induces a multivariate Gaussian marginal over ỹyy with mean 111T ⊗µµµ and covariance

KKKyy = (IIIT ⊗CCC)KKKxx(IIIT ⊗CCCT )+(IIIT ⊗RRR) (1.12)

GPFA is mathematically identical to the linear model of coregionalization (LMC) which
arose from the geostatistics literature [26]. Both LMC and GPFA construct a multi-output
kernel as the covariance of a linear combination of multiple latent Gaussian processes.
However, while LMC uses latent processes only as intermediate variables in the construction
of a multi-output kernel, in GPFA we are actually interested in the posterior over these latents
processes (Figure 1.3C).

GPFA for regression

In GPFA, the mean and covariance of the latent variables are inferred as follows (Figure 1.3C):

E(x̃xx|ỹyy) = KKKxx(IIIT ⊗CCCT )KKK−1
yy (ỹyy−111T ⊗µµµ) (1.13)

cov(x̃xx|ỹyy) = KKKxx−KKKxx(IIIT ⊗CCCT )KKK−1
yy (IIIT ⊗CCC)KKKxx (1.14)

Once the latent variables have been inferred, posterior predictions are made according to
Equation 1.8 (Figure 1.3D).

Fitting

The GPFA hyperparameters are fit using gradient descent on the negative marginal log
likelihood, as in Equation 1.6

logp(ỹyy|ttt) =−1
2
(ỹyy−111T ⊗µµµ)KKK−1

yy (ỹyy−111T ⊗µµµ)− 1
2

log|KKKyy|−
NT
2

log2π (1.15)

The GPFA hyperparameters include CCC, the diagonal elements of RRR, and the kernel hyperpa-
rameters (timescales) of {k1, . . . ,kD}. Because CCC is learned unconstrained, one can without
loss of generality fix the prior variance to be 1 for each latent process to prevent scaling de-
generacies. For visualization, one can follow [79] and orthonormalize CCC using singular value
decomposition as CCCXXX = UUUC(DDDCVVVCXXX) (leaving the marginal likelihood unaffected). This
again eliminates some degeneracies and leads to mixed-timescale latents ordered by variance
explained. In Figure 1.3 and throughout this thesis, the latents are not orthonormalized to
keep the latents timescale-separated.
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1.4 Challenges with traditional implementations

Traditional implementations of GPFA are useful for short, trial-structured datasets, however
they scale poorly with a computational complexity of O(N3T 3) and a memory footprint of
O(D2T 2). The computational complexity suggested by Equation 1.15 can be reduced to
O(D3T 3) using the low rank and diagonal structure of Equation 1.12, however the T 3 factor
(and T 2 factor in space complexity) are the limiting factor for large datasets (see Appendix
F.1 of ref. 60 for the reduction to O(D3T 3)). This bottleneck lies in the need to invert (and in
traditional implementations, represent) KKKyy ∈RNT×NT or KKKxx ∈RDT×DT , and, in general,
inverting a matrix of size M×M has time complexity O(M3).

While D, the number of latents, is typically small, the cubic and square scaling of T
in terms of computational complexity and memory respectively are prohibitive for large
datasets. In its traditional implementation, GPFA can therefore only be applied to short
chunks of data, e.g. < 30s at 10ms resolution for the case of 4 latents. In practice, GPFA has
been applied to up to 150 time-points (1.5 seconds at 10ms resolution with up to 15 latents in
[79], or 2.6 seconds at 20ms resolution with 9 latents in [38]) or fewer [21].

The traditional solution to this challenge is chunking long datasets from trial-structured
experiments into shorter single-trial-length pieces. This solution is problematic because it
prevents GPFA from resolving any meaningful longer-timescale latents (Figure 1.4). Longer-
timescale latents could represent changes in task engagement, attentional drift, or other
relevant information about mental state [21]. While progressive changes across many trials
can be captured by non-probabilistic methods such as Williams et. al.’s Tensor Component
Analysis (TCA; 72), the trial factors in TCA can only scale the temporal- and neuron-factor
activity multiplicatively. This means that, while TCA can capture some changes across trials,
it is limited in its expressiveness. Additionally, chunking the data is awkward when a dataset
has no inherent trial structure, or has trials of different lengths. This challenge is not unique
to GPFA—other approaches such as LFADS also require chunking data [64, 38]. [38] in
particular breaks non-trial-structured reaching data into 600ms chunks with 200ms overlaps
so that inferred latents could be re-stitched back together as a weighted average.

In this thesis I propose and apply methods for scaling GPFA to these larger datasets by
reducing the time and space complexity, overcoming some of the challenges and limitations
discussed above.
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Fig. 1.4 Resolving timescales on datasets chunked into shorter trials. (A-C) GP models
trained on the same data but separated into 1, 5, and 10 smaller trials respectively. Models
were initialized with the generative timescale and observation noise hyperparameters (ℓ= .1
and σn = 1.5). The posteriors were inferred using both the true hyperparameters over the full
dataset (blue) and the learned hyperparameters on the smaller trials (black). Shading indicates
±2 standard deviations from the mean. In the one-trial case, where the trial spans many
timescales, the learned posterior is very close to the true posterior. However for models trained
on shorter trials, the learned posterior is further from the true posterior, with discontinuities
at the trial boundaries. D) The recovered timescales for models trained on data split into
different numbers of trials across five different initializations (ℓ ∈ {0.01,0.05,0.1,0.5,1.0}).
Error bars show the 20th and 80th quantiles across these five timescale initializations. Note
that for models trained on more trials where each trial spans fewer timescales, the timescale
becomes increasingly difficult to resolve—the learned timescale is further from the true
timescale, and the variance in recovered timescales increases.
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1.5 Self-paced reaching dataset

To demonstrate the efficacy of Scalable GPFA methods described in the following chapters
with respect to the challenges discussed in Section 1.4, we aim to apply GPFA to long
recordings where chunking would be unnatural or suboptimal.

In particular, we apply GPFA to a biological dataset provided by refs. [52, 47] consisting
of spike-sorted data from continuous recordings spanning up to one hour, with∼ 300 neurons
recorded in two rhesus macaques. In this dataset, the animals make self-paced reaches to
a series of targets in an 8x8 or 8x17 grid. These reaches are self-paced in that as soon as
the animal successfully acquires a target, the next target appears. Targets do not time out,
so animals could take as much or as little time as they want for each reach. After a target
is acquired, there is a 200ms ’lockout interval’ during which the next target appears, but
no target can be acquired. Data is recorded from both M1 and S1, and hand and cursor
kinematics are also recorded. For analyses, neurons with firing rates below 2 Hz are excluded,
and data is binned at 25 ms resolution. Notably, this dataset could have longer intrinsic
timescales than would be resolvable if the data were artificially chunked into trials.

Scalable GPFA allows us to see if previous findings regarding motor preparation also
hold in less structured environments. Applying a scalable version of GPFA introduced in
Chapter 4 resolves long timescales that seem to correlate with a measure of task engagement.
This dataset additionally can be used to investigate the relationship between representations
in M1 and S1 as both areas are recorded from simultaneously.

1.6 Overview

In the remainder of this thesis, I present work that enables GPFA to be applied to data that is
multiple orders of magnitude larger than was previously possible. In Chapter 2, I overview
existing and previously theorized methods for scaling GPs and GPFA. I then introduce and
discuss my implementation of scalable iterative GPFA in Chapter 3. In Chapter 4, I describe
a collaboration with Kris Jensen, Ta-chu Kao, and Guillaume Hennequin where I helped
develop a scalable variational fully Bayesian extension of GPFA, bGPFA, that infers the
matrix CCC in Equation 1.8 instead of treating it as a set of hyperparameters. I compare these
two methods on real data in Chapter 5. Finally I conclude with a discussion of these methods
and future directions in Chapter 6.



Chapter 2

Mathematical Preliminary

2.1 Existing methods for scaling GPs

Existing methods for scaling GPs can be categorized into approximate methods, including
inducing point and other variational approaches, and “exact” iterative methods that exploit
specific structure in the GP covariance function, such as Toeplitz or Kronecker structure
[62, 68, 17, 60, 75, 76, 14].

Variational methods lower bound the (sometimes intractable) marginal log likelihood
and perform hyperparameter optimization with respect to that more tractable lower bound
[62, 68]. In particular, inducing point methods use a set of surrogate input points to construct
a low-rank approximation to the covariance matrix, adaptively positioning them in input
space so as to maximize the accuracy of the resulting approximate posterior [57, 9]. This
works well when the underlying function varies on lengthscales long enough that only a few
inducing points are needed to resolve them. However, these methods will require many more
inducing points for hour-long neural recordings with typical fluctuation timescales on the
order of tens of milliseconds such that they are either not sufficiently low-rank or do not
accurately approximate the posterior. If these short timescales were the only contributors
to the data’s auto-covariance, one could still chunk the data into short trials spanning a
few of these timescales only without losing much. Inducing point methods would then be
applicable again. However, neural activity is known to vary over a large range of timescales,
and chunking would inevitably limit the ability to resolve the timescales at the longer end of
the spectrum (Figure 1.4; 6).

In contrast to approximate variational approaches, “exact” iterative methods either com-
pute the exact marginal likelihood or an unbiased stochastic estimate thereof. Scalability is
achieved by exploiting specific structure in the kernel to efficiently calculate kernel-vector
products, and by using these fast matrix-vector products within the iterative conjugate gra-



12 Mathematical Preliminary

dients (CG) algorithm to compute products with the inverse covariance matrix, as required
both for training and inference [71, 60, 17]. In particular, it is possible to use CG-based
algorithms to compute stochastic estimates of the log determinant term in the log marginal
likelihood, as well as its gradient [71, 60]. Chapter 3 is dedicated to the application of such
iterative methods to scaling up GPFA, as was suggested in ref. 60 but never implemented.
Before that, I now review the various technical components that need to be pieced together to
yield exact and scalable iterative GP inference and learning. Some of these components can
in fact be integrated into variational inference-based methods, which we exploit in Chapter 4.

2.2 Scaling GPFA via Toeplitz- and Kronecker-structured
kernels

In this section I explain the mathematics behind GPFA’s prohibitive time and space complex-
ities, and introduce a subset of the solutions proposed in the appendix of ref. 60 for scaling
up GPFA.

2.2.1 The scalability problem

The derivative of GPFA’s marginal log likelihood Equation 1.15 with respect to the hyper-
parameters must be calculated on each optimization step. The portions of Equation 1.15
that will be non-zero when differentiated with respect to the hyperparameters, including
log|KKKyy| and KKK−1

yy , must be calculated for each optimization step. Naively, KKKyy ∈ RNT×NT

is very costly to invert and take the log determinant of (Ospace(N2T 2),Otime(N3T 3)). This
cost can be reduced to O(D3T 3) as described in Appendix F.1 of ref. 60by exploiting the
low spatial rank of Kyy, using the Woodbury matrix identity. The scaling of T 3 however is
still prohibitive in the case of long datasets. Appendix F.2 of ref. 60 suggests a more efficient
method of scaling using efficient KKKyyvvv products.

In the Section 2.2.2 I explain how to efficiently calculate KKKyyvvv as suggested in ref. 60.
Then in Section 3.1 I explain how one can leverage these efficient kernel vector products
to iteratively invert and calculate the log determinant of KKKyy using conjugate gradients and
stochastic estimation of the log determinant [15, 60]. In Chapter 4, I explain how one can
leverage the Toeplitz portion of these fast kernel vector products to implement a scalable
variational version of GPFA.
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2.2.2 Fast kernel vector products

If fast KKKyyvvv kernel vector products can be calculated, then there are iterative methods
(discussed in Section 3.1) that we can take advantage of that do not have the systematic
shortcomings of approximate methods discussed in Section 2.1.

Here, I explain mathematically how to achieve fast kernel vector products with GPFA
specifically, as proposed but not implemented by [60]. Naively, kernel vector products have
O(N2T 2) complexity in both space and time because KKKyy ∈ RNT×NT . With the methods
proposed by [60] and discussed below, the time complexity is reduced toO(NDT +DT logT )
and the space complexity is O(NT +ND).

Exploiting Toeplitz structure

Recall the definition of KKKxx (Equation 1.11) as a block diagonal matrix composed of blocks
of stationary kernels Ki(ttt, ttt). Recall that for typical neural data, spike counts are binned into
equally spaced time bins, so the elements of ttt can be assumed to be evenly spaced. Therefore
Ki(ttt, ttt) is structured as illustrated in Figures 1.2 and 2.1A. This structure is referred to as
Toeplitz structure—elements are the same along any of the diagonals.

Importantly, Toeplitz matrices can be embedded within circulant matrices as illustrated
in Figure 2.1 to enable fast matrix-vector products. Circulant matrices are matrices in which
one column contains all the entries of the matrix, and each subsequent column’s entries are
shifted down by one with the last entry becoming the first entry in the subsequent column.
Circulant matrices have the key property that vector products with them can be calculated
efficiently in the Fourier domain. Given a circulant matrix FFFc entirely characterized by its
first column fff , and a vector, zzz:

FFFczzz = DFT−1(DFT( fff )⊙DFT(zzz)) (2.1)

where DFT denotes the discrete Fourier transform. To calculate Ki(ttt, ttt)vvv, we can thus embed
Ki(ttt, ttt) ∈ RT×T in a circulant matrix FFFc ∈ R(2T−1)×(2T−1), such that

FFFc

vvv

000

=

Ki(ttt, ttt)vvv

SSSvvv

 (2.2)

where SSS ∈ R(T−1)×T is the (irrelevant) lower left corner of FFFc. Thus, the desired matrix-
vector product with Ki(ttt, ttt) can be extracted as the first T elements of the result. Because
this multiplication can be computed with fast Fourier transforms, it has O(T logT ) time
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complexity. Because Ki(ttt, ttt) can be stored as the first column of circulant matrix of length
2T −1, the space complexity is O(T ).

v1
v2
v3
v4

0

0

0

= v

z

Ki(t, t) =

f

Fig. 2.1 Schematic of Toeplitz structure. In this schematic, the color of each element in
the matrix indicates the value of that element. To compute Ki(ttt, ttt)vvv (black outlines), where
vvv = [v1,v2,v3,v4], first note that Ki(ttt, ttt) has Toeplitz structure—its elements are the same
along the diagonal. Because of its Toeplitz structure, Ki(ttt, ttt) can be embedded into a circulant
matrix (white outline) which is entirely characterized by its first column (red outline) as
follows:

• The first column of the circulant matrix is given by concatenating the first column of
Ki(ttt, ttt), Ki(ttt, t1) = Ki(t1, t1),Ki(t2, t1), ...,Ki(tT , t1) with its reverse, excluding the first
element (the last element in the reverse version). The first column of the circulant ma-
trix is thus given by Ki(t1, t1),Ki(t2, t1), ...,Ki(tT , t1),Ki(tT , t1),Ki(tT1, t1), ...,Ki(t2, t1).

• The top element of each column of the circulant matrix is given by the bottom element
of the previous column (the column immediately to its left).

• The remaining elements of each circulant column are given by previous column’s
elements, shifted down by one (removing the bottom element).

Multiplying by vector zzz (red outline) yields the desired result once the first T elements are
extracted as described in Equation 2.2. This multiplication can be computed efficiently using
fast Fourier transforms (Equation 2.1).

If ttt is not evenly spaced, these methods can still be applied using KISS-GP, a method
that interpolates the kernel onto a regular grid [76].

Exploiting Kronecker structure

The above section demonstrated how to compute fast kernel vector products for stationary,
one-dimensional kernels. I now show how to exploit the Kronecker structure of the GPFA ker-
nel (Equation 1.11) to compute fast kernel-vector products with this multi-output covariance.
Kronecker products have the property that (AAAT ⊗FFF)vec(VVV ) = vec(FFFVVV AAA) [69]. Applying



2.2 Scaling GPFA via Toeplitz- and Kronecker-structured kernels 15

this property to KKKxx (Equation 1.11 ) and then transposing the inside of the vec(·) gives

KKKxxvvv =
D

∑
i=1

[
Ki(ttt, ttt)⊗ (eeeieeeT

i )
]

vvv =
D

∑
i=1

vec
(
(eeeieeeT

i )VVV Ki(ttt, ttt)
)
=

D

∑
i=1

vec
((

Ki(ttt, ttt)VVV T (eeeieeeT
i )
)T
)

(2.3)
where vvv = vec(VVV ), VVV ∈ RD×T . Note that (eeeieeeT

i )
T = (eeeieeeT

i ), and Ki(ttt, ttt)T = Ki(ttt, ttt) because
covariance matrices are symmetric.

The time complexity for KKKxxvvv thus has a factor of D for the outer sum, and a factor of
T logT for the summand. VVV T (eeeieeeT

i ) selects column i of VVV T in O(1) time. That column,
VVV T

i can than be multiplied as Ki(ttt, ttt)VVV T
i using the methods described in Section 2.2.2 in

O(T logT ) time. Thus the total time complexity for KKKxxvvv is O(DT logT ). The space com-
plexity is O(T D) due to the circulant representation of Ki(ttt, ttt) as discussed in Section 2.2.2.

Now for KKKyyvvv products, the Kronecker product can be leveraged again, twice in the case
of the first term:

KKKyyvvv = (IIIT ⊗CCC)KKKxx(IIIT ⊗CCCT )vvv+(IIIT ⊗RRR)vvv (2.4)

= vec(CCCvec−1(KKKxxvec(CCCTVVV IIIT ))IIIT )+vec(RRRTVVV IIIT ) (2.5)

= vec(CCCvec−1(KKKxxvec(CCCTVVV )))+vec(RRRVVV ) (2.6)

Note that here VVV ∈ RN×T and again vvv = vec(VVV ).
The time complexity for vec(RRRVVV ) is O(NT ) because RRR is a diagonal matrix, the time

complexity for vec(CCCTVVV ) is O(NDT ), the time complexity of vec−1(KKKxxvec(CCCTVVV )) is
O(DT logT +NDT ), and so the time complexity of the entire vec(CCCvec−1(KKKxxvec(CCCTVVV )))

is O(DT logT +NDT ).
The overall time complexity of KKKyyvvv, leveraging Toeplitz and Kronecker structure is thus

O(DT logT +NDT ). The overall space complexity is O(NT +ND+DT ). No N2 term
is needed because the diagonal matrices RRR and IIIT can be represented sparsely by vectors
of length T . We assume D < N because GPFA is used for dimensionality reduction, so
this space complexity reduces to O(NT +ND) which is no more than the space complexity
required to store the vector vvv and the mixing matrix CCC.



Chapter 3

Scalable Iterative GPFA

3.1 Scaling GPFA assuming fast kernel vector products

This section describes fast iterative methods for computing KKK−1
yy and log |KKKyy|, the difficult-

to-compute and repeatedly needed terms of the loss and its derivative used for fitting GPFA
(Equation 1.15). Each iteration makes use of the fast kernel vector products discussed in
Chapter 2.

3.1.1 Fast K−1
yy v

Fast KKK−1
yy vvv products can be computed by using the conjugate gradients (CG) algorithm

to solve KKKyyxxx = vvv [30]. CG computes xxx through a series of KKKyyaaa products, without ever
requiring the full construction of KKKyy. A naive approach to computing gradients through
such solutions would be to backpropagate through every CG step (in our case, the worst case
would be NT steps). Appendix F.2 in ref. [60] derives a method to avoid this using an implicit
differentiation technique that identifies the desired gradient as another specific CG solve, thus
removing the need to store the entire graph of all CG iterations. This enables differentiating
through CG in constant memory. In practice, I found this method was unnecessary as CG
converged sufficiently in fewer than NT steps. I additionally found that the first software
package I began implementing GPFA in (Section 3.2.1) already included a version of CG
that dealt with this memory issue in a similar way. While the package I fully implemented
GPFA in (Section 3.2.2) does not implement this memory-saving method, in practice I did
not find this to be a limiting factor.
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3.1.2 Fast log |Kyy| and its derivative

In this work, the log |Kyy| is approximated using trace estimation with the Lanczos ap-
proximation as described in ref. [18]. [60] introduces an alternative, unbiased method for
calculating log |Kyy| that leverages fast KKKyyvvv products that I have not implemented. This un-
biased method would be preferable for model comparison where the marginal log likelihood
is computed only once after training, and must be precise.

The gradient of the log determinant is what must actually be computed repeatedly during
fitting. Fast gradients of the log determinant can be calculated by using Hutchinson trace
estimation (Equation 3.2) and rearranging in Equation 3.3 to leverage fast CG-based KKK−1

yy vvv
from Section 3.1.1 [15, 60, 32]:

∂ log |KKKyy|
∂θi

= Tr
[

KKK−T
yy

∂KKKyy

∂θi

]
(3.1)

=

〈
Tr
[

ξξξ
T KKK−T

yy
∂KKKyy

∂θi
ξξξ

]〉
ξξξ

(3.2)

=

〈
Tr
[

ξξξ (KKK−1
yy ξξξ )T ∂KKKyy

∂θi

]〉
ξξξ

(3.3)

Here, θi is the hyperparameter one is differentiating with respect to and ξξξ ∈ RNT is a
random vector with each entry randomly and evenly sampled from {−1,1}, the Rademacher
distribution.

The expression in Equation 3.3 can be calculated efficiently by defining zzz = KKK−1
yy ξξξ which

can in turn be calculated efficiently using conjugate gradients, as described in Section 3.1.1.
We can then rewrite Equation 3.3 as follows:〈

Tr
[

ξξξ (KKK−1
yy ξξξ )T ∂KKKyy

∂θi

]〉
ξξξ

=

〈
Tr
[

ξξξ zzzT ∂KKKyy

∂θi

]〉
ξξξ

(3.4)

=

〈
zzzT ∂KKKyy

∂θi
ξξξ

〉
ξξξ

(3.5)

=

〈
zzzT ∂

∂θi
(KKKyyξξξ )

〉
ξξξ

(3.6)

Importantly, Equation 3.6 requires a differentiation of matrix vector products, which can be
performed efficiently without explicitly representing KKKyy as described in Chapter 2. Note
that Equation 3.6 reduces the space complexity of differentiating a matrix of size NT ×NT
to differentiating a vector of size NT , with respect to O(ND) parameters (O(N3T 2D)→
O(N2T D)). However, this memory cost can still be reduced further, by treating zzz in Equa-
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tion 3.6 as a constant w.r.t. θθθ and rewriting

∂ log |KKKyy|
∂θθθ

=
∂

∂θθθ

〈
zzzT KKKyyξξξ

〉
ξξξ

(3.7)

thus reducing the memory cost to O(ND), i.e. the cost of differentiating a scalar w.r.t. the
model’s parameters.

3.2 Implementation

As I learned about GPs and began to implement them, I explored different potential frame-
works to use. I started with JAX, an automatic differentiation framework derived from
autograd (NumPy-like automatic differentiation in Python) combined with XLA, a compiler
for machine learning [8]. After spending some time with JAX, however, we realized that
GPyTorch already implemented many of the Toeplitz-structure-based speedups [25]. More-
over, GPyTorch also provides the computational machinery to perform kernel interpolation
onto regular grids, which is one of the modern ways of dealing with non-gridded data [76].
Although I did not plan to apply GPFA to such heterogeneous datasets, it appeared important
to facilitate these applications for future users. I therefore decided to implement GPFA in
GPyTorch to give the resulting implementation more flexibility for others to use.

In hindsight, JAX may have been the better choice, because while GPyTorch has many
features already implemented, it has proven relatively opaque in that the precise algorithms
used depend dynamically on the problem structure and are therefore harder to predict.
Additionally, implementing new features (e.g. new preconditioners) can be quite difficult,
especially if no method for adding that type of feature is documented.

3.2.1 JAX

Using JAX, I implemented Toeplitz-accelerated matrix vector products. I used this and
the JAX conjugate gradients algorithm, which implements a memory-saving method for
differentiating through its CG algorithm, to implement GP regression before moving to
GPyTorch.

I found JAX straightforward to work with because it is purposefully implemented such
that the user interface is very similar to NumPy – code can mostly be switched from NumPy
to JAX by importing JAX in place of NumPy. This similarity also made it transparent for
me to understand what my code was doing. It is worth noting, however, that not everything
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available in NumPy has been implemented in JAX yet (e.g. some of the functions needed to
implement non-reversible GP kernels in [60]).

JAX allows one to perform “just-in-time" (’jit’) compilation using a decorator. Rather
than dispatching operations to the GPU one by one, ‘jitting’ a function instructs JAX to
compile operations together with access to the full graph for the ‘jitted’ operations, enabling
a number of optimizations (e.g. cache efficiency) on the GPU or TPU [8]. While this
occasionally resulted in unfamiliar error messages, I found ‘jitting’ relatively easy to learn,
and ‘jitted’ JAX provided immense speedups once compiled.

3.2.2 GPyTorch

GPyTorch seemed attractive with its many features, however I found it proved easier to use
than to extend. I did not switch back to JAX because learning to use GPyTorch had required
a significant time investment, and once something is already implemented, GPyTorch is quite
user friendly.

One attractive feature of GPyTorch is its LazyTensor class and subclasses. This provides
a method for automatically performing efficient computations with structured tensors. For
example, DiagLazyTensor wraps a diagonal matrix, and automatically inverts it by inverting
each diagonal element, and performs matrix multiplications by directly scaling the rows
of the matrix or vector to be multiplied with the diagonal matrix. Similarly, GPyTorch
offers a ToeplitzLazyTensor and a KroneckerLazyTensor class that implement efficient
computations involving Toeplitz- and Kronecker-structured matrices, respectively. I refer to
implementations that leverage this Toeplitz structure as ‘gridded’, and implementations that
do not leverage this Toeplitz structure as ‘ungridded.’ These lazy tensors are composable and
can greatly accelerate computations when used properly. This part of the library is still under
active development, and the available LazyTensor subclasses changed as I was using them.

It is worth noting that GPyTorch already provides a multi-output kernel similar to GPFA’s
KKKyy kernel, called the Linear Model of Coregionalization (LMC; 26). However, this class
only exposes the marginal covariance KKKyy, but does not expose other components of the joint
covariance of xxx and yyy that are needed in GPFA to perform inference. Therefore, I wrote an
entire GPFA kernel and model class from scratch—code is available in Appendix A.2.

GPyTorch has a settings module which allows different features to be turned on and off
as demonstrated in Code Example 3.2. In particular, I use different settings to perform “exact”
and iterative GPFA. I detail the differences between the “exact” and iterative GPFA methods
used in Section 3.3 in Table 3.1. See Code Example 3.1 for setting up a GPyTorch GPFA
model and initializing it; see Code Example 3.2 for training and performing inference using
a GPyTorch model, and Algorithm 1 for pseudocode.
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3.3 Application of the GPyTorch implementation to syn-
thetic data

I first applied my GPyTorch implementation of GPFA to synthetic data generated from the
GPFA model using known hyperparameters. Doing so allowed me to choose training param-
eters, verify my implementation’s correctness, and measure its space and time complexity as
discussed below.

For all experiments presented in this section and in Chapter 5, I used the Adam optimizer
and ran all computations in double precision [39]. I additionally constrained all elements of
R to be > 0.1 as suggested by [71]. I found that without this constraint, the loss diverged.

CG solve accuracy was calculated when solving for bbb in AAAbbb = ccc as ∥ccc−AAAb̂bb∥2
∥ccc∥2

. I did not
precondition CG—in practice I found that it converged sufficiently for training and inference
on synthetic datasets without preconditioning, despite being relatively ill-conditioned. While
I did attempt to implement two potential preconditioners, I ran into issues with numerical
instabilities that led to worse performance than without the preconditioners. Because iterative
GPFA worked on the smaller synthetic datasets I was testing on, I did not prioritize resolving
those issues. From experiments I discuss in Chapter 5, however, it seems that a good
preconditioner may be critical in the case of large real datasets.

For a comparison of implementation and hyperparameter details between the exact and
iterative methods see Table 3.1.

3.3.1 Choosing training parameters

Iterative GPFA is very sensitive to the choice of training parameters. I thus determined
parameters to use for training via a grid search (Figure 3.1).

Based on this grid search, I trained iterative and exact GPFA with a learning rate of 0.005
in the remaining experiments. I ran CG to an accuracy tolerance of 10−3 during training, a
lower tolerance than that suggested by [71], and found that a tolerance of 10−5 (lower than
ref. 71 suggests) was necessary to obtain accurate latent posteriors after training. I used
10 probe vectors for trace estimation of the gradient of the log determinant. Surprisingly,
more probe vectors led to worse performance, possibly because 10 probe vectors leads to
a more stochastic gradient descent trajectory which has benefits in many loss landscapes.
I did explore whether 1 or 4 probe vectors would outperform 10 probe vectors, however
performance suffered with fewer probe vectors.
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Fig. 3.1 Training parameters for iterative GPFA. (A-C) Cross-validated mean square
prediction error (MSE) for different CG tolerance values and learning rates with 10, 100, and
1000 trace samples respectively. MSE was calculated for 100 time-points not seen during
training, with half of the neurons used to infer the latents. Data not shown has a higher MSE
than the range shown. Dashed lines show MSE for the exact training method (Table 3.1)
(D) Time per training step for 10 trace samples, as a function of CG tolerance, averaged
across learning rates. Shadings show the 20th and 80th quantiles across five learning rates.
(E) Number of steps required to achieve convergence, defined as the exact loss reaching
and subsequently staying below lmin + 0.1× (linit − lmin), where lmin is the minimum loss
achieved by the exact method for a given learning rate, and linit is the initial loss. Excluded
data did not achieve convergence thus defined. (F) Time to convergence computed as the
value shown in D multiplied by the value shown in E. All models in this figure were trained
for 7501 training steps on the same data with T = 100, D = 2, and N = 20, and loss was
recorded every 20 steps (including the first and last step).
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3.3.2 Verifying correctness

To verify that the derivatives used in training iterative GPFA were mathematically correct,
I initialized the model with the true generative parameters and trained the model from that
initialization. Figure 3.2A demonstrates that the marginal log likelihood does increase, but
does not increase too much (less than 2.5 increase from the initial value) during 1000 training
steps. Moreover, the posterior latents are more or less conserved, and are relatively consistent
across GPFA implementations (Figure 3.2B-C). These small deviations from ground truth
parameters and latents are to be expected, because the model was trained on a finite amount
of noisy (Ri,i > 0.1) data.

The difference in loss between exact and iterative implementations (Figure 3.2A) even
in the first step is because, in the iterative case, the log determinant term in the loss is
approximated using the biased Lanczos method rather than exactly calculated (note however
that the stochastic estimation of the gradient of the log determinant is unbiased) [18]. The
exact loss is also computed and plotted during iterative training to demonstrate this. Because
the exact and iterative methods differ in how the loss is calculated (Table 3.1), the two
implementations return different losses, even though at the beginning of the first step, all
hyperparameters are equal.

3.3.3 Measuring time and space complexity

To assess the extent to which the iterative method realizes the computational and memory
savings predicted by the complexity analysis, I measured both time and peak increase in
active memory used by PyTorch during each training step and during inference (Figure 3.3),
for both the exact and iterative implementations (see Table 3.1 for details). In particular, note
that I did not compute log |KKKyy| during these measurements as it is unnecessary for training
and inference (it is only needed to monitor the progress of the loss function during training,
and for model comparison).

As noted in Table 3.1, the GPyTorch exact implementation does not make use of the
Kronecker structure in KKKyy to compute its Cholesky decomposition. Therefore, the exact
implementation depicted here scales suboptimally as N2 rather than D2. Regardless, the
scaling would still be quadratic in T even with a Kronecker-aware exact implementation.
Figure 3.3 demonstrates the scaling with time and memory for exact and iterative imple-
mentations with and without leveraging Toeplitz structure. Memory scaling is quadratic
in T for all methods except for the iterative gridded method, for which memory scaling
is near-linear (Figure 3.3C-D). For the largest T , the iterative gridded method is the only
method which does not overflow the memory constraints. While exact methods and iterative
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Fig. 3.2 Correctness of iterative GPFA. (A) Evolution of the marginal log likelihood for a
GPFA model initialized with ground truth generative parameters, and trained using either
the exact or the iterative gridded method (see legend and Table 3.1). For the iterative
implementation, the loss can be computed exactly (yellow) or stochastically using trace
samples (red) during training. (B-C) Timecourse of the latent posterior for a model initialized
with generative parameters and then either not trained (generative) or trained (iterative, exact).
Shading is ±2 posterior standard deviations (as calculated from the posterior covariance in
Equation 1.14). There is good agreement between all three models, with some mismatch
between the generative posterior and the iterative and exact posteriors. This is to be expected
as there is substantial noise (Ri,i > 0.1) and finite data. All models in this figure were trained
on the same data with T = 100, and N = 20.
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ungridded methods are faster for inference and training with few timepoints, the iterative
gridded method is fastest for large T , and enables GPFA on larger T than possible with the
other methods (Figure 3.3A-B).

Fig. 3.3 Performance Scaling of Iterative GPFA with T . (A–B) Training time per step (A)
and inference time (B) both scale quadratically with T in the exact case, and near linearly in
the iterative case. (C–D) Maximum active memory during training (C) and inference (D) for
the various methods. Shadings show the 20th and 80th quantiles across five repeats, average
train times are averaged across 20 training steps within each repeat, and train memory is the
increase in memory from immediately before training starts to the peak active memory used
over the 20 train steps. In all panels, we set D = 2 and N = 20. Data not shown correspond
to unsuccessful runs that overflowed the GPU’s memory (11GB).



3.3 Application of the GPyTorch implementation to synthetic data 25

Table 3.1 GPyTorch implementation details for exact vs. iterative GPFA.

Computation Details Exact Iterative
KKKyyvvv products Kronecker Yes for multiplication,

no for inversion (could
be, but not imple-
mented in GPyTorch)

Yes

Toeplitz Yes if Gridded Yes if Gridded
KKK−1

yy vvv How computed Cholesky Conjugate Gradients
CG tolerance n/a 10−3 unless otherwise

specified
∂ log |KKKyy|

∂θθθ
How Computed Cholesky Approximated using

CG with trace approxi-
mation sample vectors

CG tolerance n/a 10−3 unless otherwise
specified

# trace samples n/a 10 unless otherwise
specified

log |KKKyy| How Computed Cholesky Lanczos approxima-
tion (biased) with trace
approximation sample
vectors (unbiased)

Always Computed? Yes Not computed when
gpytorch.settings.
skip_logdet_forward
is False

# trace samples n/a 10 unless otherwise
specified

# Lanczos vectors n/a # trace samples
Inference How Computed Cholesky Conjugate Gradients

CG tolerance n/a 10−5 unless otherwise
specified
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1 i m p o r t t o r c h
2 i m p o r t g p y t o r c h
3 i m p o r t numpy as np
4 from gpfa_model i m p o r t GPFAModel , g p f a _ f a _ i n i t # See Appendix A.2
5

6 # t h e p a r a m e t e r s below must be s e t a c c o r d i n g t o use c a s e
7 gr id_mode = ? # Whether t o use T o e p l i t z o r n o t
8 d _ f i t = ? # Number o f l a t e n t s t o f i t
9 e l l = ? # t i m e s c a l e t o i n i t i a l i z e wi th

10 Y = ? # T x N numpy a r r a y o f t r a i n i n g d a t a
11

12 d e v i c e = t o r c h . d e v i c e ( " cuda " ) # t h e t o r c h cuda o r cpu d e v i c e
13

14 # Y: np a r r a y o f t r a i n i n g da t a , T : # o f t ime−p o i n t s , n : # o f n e u r o n s
15 T , n = Y. shape
16 T = t o r c h . a r a n g e ( T ) . t o ( d e v i c e ) . d ou b l e ( ) # L i s t o f t ime−p o i n t s
17

18 # t h e m u l t i t a s k l i k e l i h o o d has bo th g l o b a l and neuron−s p e c i f i c n o i s e ,
h e r e we c o n s t r a i n bo th > 0 . 0 5 , e n s u r i n g t h a t R > 0 . 1

19 l i k e l i h o o d = g p y t o r c h . l i k e l i h o o d s . M u l t i t a s k G a u s s i a n L i k e l i h o o d (
20 num_tasks =n , n o i s e _ c o n s t r a i n t = g p y t o r c h . c o n s t r a i n t s . G r e a t e r T h a n ( . 0 5 ) )
21

22 # Make a l i s t o f l a t e n t k e r n e l s w i th o r w i t h o u t g r i d d i n g
23 i f gr id_mode :
24 k e r n e l s = [ g p y t o r c h . k e r n e l s . G r i d K e r n e l (
25 g p y t o r c h . k e r n e l s . RBFKernel ( ) , [ T ] ) f o r _ i n r a n g e ( d _ f i t ) ]
26 e l s e :
27 k e r n e l s = [ g p y t o r c h . k e r n e l s . RBFKernel ( ) f o r _ i n r a n g e ( d _ f i t ) ]
28

29 Y t r a i n = t o r c h . t e n s o r (Y) . t o ( d e v i c e ) . d ou b l e ( )
30

31 # I n s t a n t i a t e a model
32 model = GPFAModel ( T , Y t r a i n , l i k e l i h o o d , k e r n e l s , d _ f i t , n )
33

34 # I n i t i a l i z e u s i n g f a c t o r a n a l y s i s
35 g p f a _ f a _ i n i t ( model , Y. T [ np . new_axis , : ] , e l l , gr id_mode )

Code Example 3.1 GPyTorch GPFA initialization. In line 16, time is measured in arbitrary
units. In lines 22, 23 and 25 to 27, note that other kernels are available through GPyTorch.
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1 # t h e p a r a m e t e r s below must be s e t a c c o r d i n g t o use c a s e
2 i t e r _ m o d e = ? # Whether t o run t h e i t e r a t i v e o r e x a c t i m p l e m e n t a t i o n
3 m a x _ c g _ i t e r s = ? # When t o s t o p CG even i f t o l e r a n c e n o t r e a c h e d .
4 max_s teps = ? # number o f t r a i n i n g s t e p s
5

6 # Make s u r e e v e r y t h i n g i s i n t h e c o r r e c t mode
7 model = model . cuda ( ) . d ou b l e ( ) . t r a i n ( )
8 l i k e l i h o o d = l i k e l i h o o d . cuda ( ) . do ub l e ( ) . t r a i n ( )
9 T = T . cuda ( )

10 Y t r a i n = Y t r a i n . cuda ( )
11

12 # T r a i n t h e model
13 o p t i m i z e r = t o r c h . opt im . Adam( model . p a r a m e t e r s ( ) , l r = . 0 0 5 )
14 mll = g p y t o r c h . m l l s . E x a c t M a r g i n a l L o g L i k e l i h o o d ( l i k e l i h o o d , model )
15

16 wi th g p y t o r c h . s e t t i n g s . m a x _ c h o l e s k y _ s i z e ( 0 ) , g p y t o r c h . s e t t i n g s .
f a s t _ c o m p u t a t i o n s ( c o v a r _ r o o t _ d e c o m p o s i t i o n = i t e r_mode , l o g _ p r o b =
i t e r_mode , s o l v e s = i t e r _ m o d e ) , g p y t o r c h . s e t t i n g s . c g _ t o l e r a n c e (1 e−3) ,
g p y t o r c h . s e t t i n g s . t e r m i n a t e _ c g _ b y _ s i z e ( True ) , g p y t o r c h . s e t t i n g s .
m a x _ c g _ i t e r a t i o n s ( m a x _ c g _ i t e r s ) , g p y t o r c h . s e t t i n g s .
m a x _ p r e c o n d i t i o n e r _ s i z e ( 0 ) , g p y t o r c h . s e t t i n g s . nu m_ t r a ce _sa mp l e s ( 1 0 ) ,
g p y t o r c h . s e t t i n g s . m e m o r y _ e f f i c i e n t ( True ) :

17 f o r i i n r a n g e ( max_s teps ) :
18 o p t i m i z e r . z e r o _ g r a d ( )
19 o u t p u t = model ( T )
20 l o s s = −mll ( o u t p u t , Y t r a i n )
21 l o s s . backward ( )
22 o p t i m i z e r . s t e p ( )
23

24 # I n f e r e n c e
25 model . e v a l ( )
26 l i k e l i h o o d . e v a l ( )
27

28 wi th g p y t o r c h . s e t t i n g s . m a x _ c h o l e s k y _ s i z e ( 0 ) , g p y t o r c h . s e t t i n g s .
f a s t _ c o m p u t a t i o n s ( c o v a r _ r o o t _ d e c o m p o s i t i o n = i t e r_mode , l o g _ p r o b =
i t e r_mode , s o l v e s = i t e r _ m o d e ) , t o r c h . no_grad ( ) , g p y t o r c h . s e t t i n g s .
f a s t _ p r e d _ v a r ( ) , g p y t o r c h . s e t t i n g s . c g _ t o l e r a n c e (1 e−5) , g p y t o r c h .
s e t t i n g s . t e r m i n a t e _ c g _ b y _ s i z e ( True ) , g p y t o r c h . s e t t i n g s .
m a x _ c g _ i t e r a t i o n s ( m a x _ c g _ i t e r s ) , g p y t o r c h . s e t t i n g s .
m a x _ p r e c o n d i t i o n e r _ s i z e ( 0 ) , g p y t o r c h . s e t t i n g s . m e m o r y _ e f f i c i e n t ( True ) :

29 p o s t e r i o r _ l a t e n t s = model . l a t e n t _ p o s t e r i o r ( T )

Code Example 3.2 GPyTorch GPFA Training and Inference. Parameters used but not
defined here are defined in Code Example 3.1. In line 3, max_cg_iters is set high enough
(around NT ) that CG is guaranteed to converge. In lines 16 and 28, max_cholesky_size(0)
ensures the Cholesky decomposition is not used for small data sizes within the iterative
implementation, in contrast to default GPyTorch behavior. max_preconditioner_size(0)
turns off GPyTorch’s default memory-intensive preconditioner.



Chapter 4

Scalable Bayesian GPFA with Automatic
Relevance Determination

While iterative GPFA (Chapter 3) provides a method for applying GPFA to larger datasets
than previously possible, it still eventually hits memory limits, and cannot be used with
intractable noise models such as the Poisson and Negative Binomial noise models which are
more appropriate for neuroscientific data. In this chapter, I discuss a project I got involved
with partway through developing the “exact” iterative method for implementing scalable
GFPA described in Chapter 3, which instead uses an approximate variational approach for
implementing scalable GPFA. The variational method enables better scaling without, as it
turns out, a loss of performance compared to my iterative method (see Chapter 5). This
variational approach also enables noise models more appropriate to neuroscientific data that
are otherwise intractable using “exact” methods, such as the Poisson and Negative Binomial
noise models. While it is possible that iterative GPFA could be improved to scale better by
preconditioning CG, the method described here already scales arbitrarily given data that can
fit in memory, because the variational approach allows batching computations by time in
addition to other benefits.

In particular, the variational approach allows us to introduce an otherwise intractable
prior over the mixing matrix CCC rather than treating it as a set of hyperparameters to be
learned. This results in a fully Bayesian version of GPFA, which we term bGPFA. We
also incorporate automatic relevance determination to infer the dimensionality of the latent
space directly rather than relying on costly cross-validation. We leverage the Toeplitz and
Kronecker structure described in Chapter 2 within this approximate variational approach.

This chapter is adapted from a paper submission by Kristopher T. Jensen*, Ta-Chu Kao*,
myself, and Guillaume Hennequin (* = equal contribution) [34].
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Fig. 4.1 Bayesian GPFA schematic. Bayesian GPFA places a Gaussian Process prior over
the latent states in each dimension as a function of time ttt (p(XXX |ttt); top left) as well as a
linear prior over neural activity as a function of each latent dimension (p(FFF |XXX); bottom left).
Together with a stochastic noise process p(YYY |FFF), which can be discrete for electrophysio-
logical recordings, this forms a generative model that gives rise to observations YYY (middle).
From the data and priors, bGPFA infers posterior latent states for each latent dimension
(p(XXX |YYY ); top right) as well as a posterior predictive observation model for each neuron
(p(YYY test |XXX test ,YYY ); bottom right). When combined with automatic relevance determination,
the model learns to automatically discard superfluous latent dimensions by maximizing the
log marginal likelihood of the data (right, black vs. blue).

My contributions to this work include the Toeplitz speed-up, the GPFA model, running
the bGPFA model on a version of a continuous reaching dataset that excluded a period where
the monkey was resting, as well as contributions to analysis ideas, figure edits, and text edits.

4.1 Introduction

Canonical GPFA is not scalable to time series longer than a few hundred time bins and
assumes a Gaussian noise model which is often inappropriate for discrete and non-negative
electrophysiological recordings [24]. Here, we address these challenges by formulating a
scalable and fully Bayesian version of GPFA (bGPFA; Figure 4.1) with a computational
complexity of O(D2T +DT logT ) and a memory cost of O(D2T ). To do this, we introduce
an efficiently parameterized variational inference strategy that ensures scalability to long
recordings and facilitates the use of non-Gaussian noise models. Additionally, the Bayesian
formulation provides a framework for principled model selection based on approximate
marginal likelihoods [65]. This allows us to perform automatic relevance determination and
thus fit a single model without prior assumptions about the underlying dimensionality, which
is instead inferred from the data itself [50, 7].



30 Scalable Bayesian GPFA with Automatic Relevance Determination

We validate our method on a small synthetic dataset with Gaussian noise where canonical
GPFA is tractable, and we show that bGPFA has comparable performance without requiring
cross-validation to select the latent dimensionality. bGPFA also naturally extends to non-
Gaussian data where it recovers ground truth parameters and latent trajectories. We then apply
bGPFA to longitudinal, multi-area recordings from primary motor (M1) and somatosensory
(S1) areas in a monkey self-paced reaching task spanning 30 minutes. bGPFA readily scales
to such datasets, and the inferred latent trajectories improve decoding of kinematic variables
compared to the raw data. This decoding improves further when taking into account the
temporal offset between motor planning encoded by M1 and feedback encoded by S1. We
also show that the latent trajectories for M1 converge to consistent regions of state space for a
given reach direction at the onset of each individual reach. Importantly, the distance in latent
space to this preparatory state from the state at target onset is predictive of reaction times
across reaches, similar to previous results in a task that includes an explicit ‘motor preparation
epoch’ where the subject is not allowed to move [1]. This illustrates the functional relevance
of such preparatory activity and suggests that motor preparation takes place even when
the task lacks well-defined trial structure and externally imposed delay periods, consistent
with findings by Lara et al. [42] and Zimnik and Churchland [81]. Finally, we analyze the
task relevance of slow latent processes identified by bGPFA which evolve on timescales of
several seconds, much larger than the timescales that can be resolved by methods designed
for trial-structured data. We find that some of these slow processes are also predictive of
reaction time across reaches, and we hypothesize that they reflect task engagement which
varies over the course of several reaches.

4.2 Method

In the following, we use the notation AAA to refer to the matrix with elements ai j. We use aaak

to refer to the kth row or column of AAA with an index running from 1 to K, represented as a
column vector.

4.2.1 Generative model

Latent variable models for neural recordings typically model the neural activity YYY ∈RN×T of
N neurons at times ttt ∈RT as arising from shared fluctuations in D latent variables XXX ∈RD×T .
Specifically, the probability of a given recording can be written as

p(YYY |ttt) =
∫

p(YYY |FFF) p(FFF |XXX) p(XXX |ttt)dFFF dXXX , (4.1)
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where FFF ∈ RN×T are intermediate, neuron-specific variables that can often be thought of as
firing rates or a similar notion of noise-free activity. For example, GPFA [78] specifies

p(YYY |FFF) = ∏
n,t
N (ynt ; fnt ,σ

2
n ) (4.2)

p(FFF |XXX) = δ (FFF−CCCXXX) (4.3)

p(XXX |ttt) = ∏
d
N (xxxd;000,KKKd) with KKKd = kd(ttt, ttt)) (4.4)

That is, the prior over the dth latent function xd(t) is a Gaussian process [73] with covariance
function kd(·, ·) (usually a radial basis function), and the observation model p(YYY |XXX) is given
by a parametric linear transformation with independent Gaussian noise.

In this work, we additionally introduce a prior distribution over the mixing matrix
CCC ∈RN×D with hyperparameters specific to each latent dimension. This allows us to learn an
appropriate latent dimensionality for a given dataset using automatic relevance determination
(ARD) similar to previous work in Bayesian PCA (Appendix B.8; 7) rather than relying on
cross-validation or ad-hoc thresholds of variance explained. Unlike in standard GPFA, the log
marginal likelihood (Equation 4.1) becomes intractable with this prior. We therefore develop
a novel variational inference strategy [70] which also (i) provides a scalable implementation
appropriate for long continuous neural recordings, and (ii) extends the model to general
non-Gaussian likelihoods better suited for discrete spike counts.

In this new framework, which we call Bayesian GPFA (bGPFA), we use a Gaussian
prior over CCC of the form cnd ∼N (0,s2

d), where sd is a scale parameter associated with latent
dimension d. Integrating CCC out in Equation 4.3 then yields the following observation model
(recalling that FFF can be thought of as firing-rates or similar noise-free activity, and XXX are the
latent variables):

p(FFF |XXX) = ∏
n
N ( fff n;0,XXXT SSS2XXX), with SSS = diag(s1, . . . ,sD). (4.5)

Moreover, we use a general noise model p(YYY |FFF) = ∏n,t p(ynt | fnt) where p(ynt | fnt) is any
distribution for which we can evaluate its density.

4.2.2 Variational inference and learning

To train the model and infer both XXX and FFF from the data YYY , we use a nested variational
approach. It is intractable to compute log p(YYY |ttt) (Equation 4.1) analytically for bGPFA, and
we therefore introduce a lower bound on log p(YYY |ttt) at the outer level and another one on
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log p(YYY |XXX) at the inner level. These lower bounds are constructed from approximations to
the posterior distributions over latents (XXX) and noise-free activity (FFF) respectively.

Distribution over latents At the outer level, we introduce a variational distribution q(XXX)

over latents and construct an evidence lower bound (ELBO; 70) on the log marginal likelihood
of Equation 4.1:

log p(YYY |||ttt)≥ L := Eq(XXX) [log p(YYY |XXX)]−KL [q(XXX)||p(XXX |ttt)] . (4.6)

Conveniently, maximizing this lower bound is equivalent to minimizing KL [q(XXX)||p(XXX |YYY )]
and thus also yields an approximation to the posterior over latents in the form of q(XXX). We
estimate the first term of the ELBO using Monte Carlo samples from q(XXX) and compute the
KL term analytically.

Here, we use a so-called whitened parameterization of q(XXX) [29] that is both expressive
and scalable to large datasets:

q(XXX) =
D

∏
d=1
N (xxxd; µµµd,ΣΣΣd) with µµµd = KKK

1
2
d νννd and ΣΣΣd = KKK

1
2
d ΛΛΛdΛΛΛ

T
d KKK

1
2
d

T
(4.7)

where KKK
1
2
d is any square root of the prior covariance matrix KKKd , and νννd ∈ RT is a vector

of variational parameters to be optimized. ΛΛΛd ∈ RT×T is a positive semi-definite (to re-
duce degeneracy) variational matrix whose structure is chosen carefully so that its squared
Frobenius norm, log determinant, and matrix-vector products can all be computed efficiently
which facilitates the evaluation of Equations 4.8 and 4.9. This whitened parameterization has
several advantages. First, it does not place probability mass where the prior itself does not.
In addition to stabilizing learning [49], this also guarantees that the posterior is temporally
smooth for a smooth prior. Second, the KL term in Equation 4.6 simplifies to

KL[q(XXX)||p(XXX |ttt)] = 1
2 ∑

d

(
∥ΛΛΛd∥2

F−2log |ΛΛΛd|+ ||νννd||2−T
)
. (4.8)

Third, q(XXX) can be sampled efficiently via a differentiable transform (i.e. the reparameter-

ization trick) provided that fast differentiable KKK
1
2
d vvv and ΛΛΛdvvv products are available for any

vector vvv:
xxx(m)

d = KKK
1
2
d (νννd +ΛΛΛdηηηd) with ηηηd ∼N (000, III), (4.9)

where xxx(m)
d ∼ q(xxxd). This is important to form a Monte Carlo estimate of Eq(XXX) [log p(YYY |XXX)].
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To avoid the challenging computation of KKK
1
2
d vvv for general KKKd [2], we directly parameterize

KKK
1
2
d , the positive definite square root of KKK, which implicitly defines the prior covariance

function kd(·, ·). In this work we use an RBF kernel for KKKd and give the expression for

KKK
1
2
d in Appendix B.5. Additionally, we use Toeplitz acceleration methods to compute KKK

1
2
d vvv

products in O(T logT ) time and with O(T ) memory cost [75, 60]. We implement and
compare different choices of ΛΛΛd in Appendix B.5. For the experiments in this work, we use
the following parameterization:

ΛΛΛd = ΨΨΨdCCCd (4.10)

where ΨΨΨd is diagonal with positive entries and CCCd is circulant, symmetric, and positive
definite. This parameterization enables cheap computation of KL divergences and matrix-
vector products while maintaining sufficient expressiveness (Appendix B.5).

Distribution over neural activity Evaluating log p(YYY |XXX) = ∑n log p(yyyn|XXX) for each sam-
ple drawn from q(XXX) is intractable for general noise models. Thus, we further lower-
bound the ELBO of Equation 4.6 by introducing an approximation q( fff n|XXX) to the posterior
p( fff n|yyyn,XXX):

log p(yyyn|XXX)≥ Eq( fff n|XXX) [log p(yyyn| fff n)]−KL [q( fff n|XXX)||p( fff n|XXX)] . (4.11)

We repeat the whitened variational strategy described at the outer level by writing

q( fff n|XXX) =N ( fff n; µ̂µµn, Σ̂ΣΣn) with µ̂µµn = K̂KK
1
2 ν̂ννn and Σ̂ΣΣn = K̂KK

1
2 LLLnLLLT

n K̂KK
1
2 , (4.12)

where ν̂ννn ∈ RD is a neuron-specific vector of variational parameters to be optimized along
with a lower-triangular matrix LLLn ∈ RD×D; and K̂KK denotes the covariance matrix of p( fff |XXX),

whose square root K̂KK
1
2 = XXXT SSS follows from Equation 4.5. The low-rank structure of K̂KK

enables cheap matrix-vector products and KL divergences:

KL[q( fff n|XXX)||p( fff n|XXX)] =
1
2
(
∥LLLn∥2

F−2log |LLLn|+ ||ν̂ννd||2−D
)
. (4.13)

Note that the KL divergence does not depend on XXX in this whitened parameterization
(Appendix B.7). Moreover, q( fff n|XXX) in Equation 4.12 has the form of the exact posterior
when the noise model is Gaussian (Appendix B.6), and it is equivalent to a stochastic
variational inducing point approximation [28] for general noise models (Appendix B.7).
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Finally, we need to compute the first term in Equation 4.11:

Eq( fff n|XXX) [log p(yyyn| fff n)] = ∑
t
Eq( fnt |XXX) [log p(ynt | fnt)] . (4.14)

Each term in this sum is simply a 1-dimensional Gaussian expectation which can be computed
analytically in the case of Gaussian or Poisson noise (with an exponential link function), and
otherwise approximated efficiently using Gauss-Hermite quadrature (Appendix B.10; 28).

4.2.3 Summary of the algorithm

Putting Section 4.2.1 and Section 4.2.2 together, optimization proceeds at each iteration by
drawing M Monte Carlo samples {XXXm}M

1 from q(XXX) and estimating the overall ELBO as:

L=
1
M ∑

XXXm∼q(XXX)

[
∑
n,t

Eq( fnt |XXXm) [log p(ynt | fnt)]

]
−∑

n
KL [q( fff n)||p( fff n)]−∑

d
KL [q(xxxd)||p(xxxd)] , (4.15)

where the expectation over q( fnt |XXX) is evaluated analytically or using Gauss-Hermite quadra-
ture depending on the noise model (Appendix B.10). We maximize L with respect to
θ = {{sd}D

1 ,{τd}D
1 ,{νννd}D

1 ,{c̃ccd}D
1 ,{ΨΨΨd}D

1 ,{LLLn}N
1 ,{ν̂ννn}N

1 and the parameters for the noise
model of choice using stochastic gradient ascent with Adam [39]. This has a total computa-
tional time complexity ofO(MNT D2+MDT logT ) and memory complexity ofO(MNT D2)

where N is the number of neurons, T the number of time points, and D the latent dimen-
sionality. For large datasets such as the monkey reaching data in Section 4.3.2, we compute
gradients with respect to θ and the noise model parameters using mini-batches across time
to mitigate the memory costs; that is, gradients for the sum over t in Equation 4.15 are
computed in multiple passes. The algorithm is described in pseudocode with further im-
plementation and computational details in Appendix B.11, and is available on github at
https://github.com/tachukao/mgplvm-pytorch/tree/bgpfa. The model learned by bGPFA can
subsequently be used for predictions on held-out data by conditioning on partial observations
as used for cross-validation in Section 4.3.1 and discussed in Appendix B.12. Latent dimen-
sions that have been ‘discarded’ by automatic relevance determination will automatically
have negligible contributions to the resulting posterior predictive distribution since the prior
scale parameters sd are approximately zero for these dimensions (see Appendix B.8 for
details).

https://github.com/tachukao/mgplvm-pytorch/tree/bgpfa
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4.3 Experiments and results

In this section we apply bGPFA with automatic relevance determination to synthetic and
biological data in order to validate the method and highlight its utility for neuroscience
research.

4.3.1 Synthetic data

We first generated an example dataset from the GPFA generative model (Equations 4.2-4.4)
with a true latent dimensionality of 3. We proceeded to fit both factor analysis (FA), GPFA,
and bGPFA with different latent dimensionalities D ∈ [1,10]. Here, we fitted bGPFA without
automatic relevance determination such that sd = s∀d. As expected, the marginal likelihoods
increased monotonically with D for both FA and GPFA (Figure 4.2A; Appendix B.8). In
contrast, the bGPFA ELBO reached its optimum value at the true latent dimensionality
D⋆ = 3. This is a manifestation of “Occam’s razor”, whereby fully Bayesian approaches
favor the simplest model that adequately explains the data YYY [45]. This is also confirmed
by the cross-validated predictive performance which was optimal at D = 3 for all methods
(Figure 4.2B). Notably, the introduction of ARD parameters {sd} in bGPFA allowed us to fit
a single model with large D = 10. This model simultaneously achieved both the maximum
ELBO and minimum test error obtained by bGPFA without ARD at D⋆ = 3 (Figure 4.2A and
B, blue) without a priori assumptions about the latent dimensionality or the need to perform
extensive cross-validation. Consistent with the ground truth generative process, only 3 of the
scale parameters sd remained well above zero after training (Figure 4.2B, inset).

We then proceeded to apply bGPFA (D = 10) to an example dataset drawn using Equa-
tions 4.4 and 4.5 with a ground truth dimensionality D⋆ = 2, and either Gaussian, Poisson, or
negative binomial noise. For all three datasets, the learned parameters clustered into a group
of two latent dimensions with high information content (Appendix B.9) and a group of eight
uninformative dimensions, consistent with the generative process (Figure 4.2C). In each case,
we extracted the inferred latent trajectories corresponding to the informative dimensions and
found that they recapitulated the ground truth up to a linear transformation (Figure 4.2D).
Fitting flexible noise models such as the negative binomial model is important because neural
firing patterns are known to be overdispersed in many contexts [66, 23, 5]. However, it is
often unclear how much of that overdispersion should be attributed to common fluctuations
in hidden latent variables (XXX in our model) compared to private noise processes in single
neurons [44]. In our synthetic data with negative binomial noise, we could accurately recover
the single-neuron overdispersion parameters (Figure 4.2E; Appendix B.10), suggesting that
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A B

C D E

Fig. 4.2 Bayesian GPFA applied to synthetic data. (A) Log likelihoods of factor analysis
(yellow) and GPFA (green) and ELBO of Bayesian GPFA without ARD (blue) fitted to
synthetic data with a ground truth dimensionality of three for different model dimensionalities.
FA and GPFA exhibit monotonically increasing marginal likelihoods while the ELBO of
Bayesian GPFA has a maximum corresponding to the true latent dimensionality. bGPFA with
ARD recovered this three-dimensional latent space as well as the optimum ELBO of bGPFA
without ARD (black dashed line). (B) Cross-validated prediction errors for the models in (a)
(Appendix B.12). The minimum is at D⋆ = 3 for all methods, consistent with the maximum
of the bGPFA ELBO without ARD in (A). bGPFA with ARD recovered the performance of
the optimal bGPFA model without requiring a search over latent dimensionalities. Inspection
of the learned prior scales {sd} and posterior mean parameters ||νννd||22 (inset) indicates that
ARD retained only D⋆ = 3 informative dimensions (top right) and discarded the other 7
dimensions (bottom left). Shadings in (A) and (B) indicate ±2 stdev. across 10 model fits.
(C) Learned hyperparameters of bGPFA with ARD and either Gaussian, Poisson or negative
binomial noise models fitted to two-dimensional synthetic datasets with observations drawn
from the corresponding noise models (Appendix B.10). The hyperparameters clustered
into two groups of informative (top right) and non-informative (bottom left) dimensions
(Appendix B.9). (D) Latent trajectory in the space of the two most informative dimensions
(c.f. (C)) for each model with the ground truth shown in black. (E) The overdispersion
parameter κn for each neuron learned in the negative binomial model, plotted against the
ground truth (Appendix B.10). Solid line indicates y = x; note that κn→ ∞ corresponds to a
Poisson noise model.

such unsupervised models have the capacity to resolve overdispersion due to private and
shared processes.

In summary, bGPFA provides a flexible method for inferring both latent dimensionalities,
latent trajectories, and heterogeneous single-neuron parameters in an unsupervised manner.
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In the next section, we show that the scalability of the model and its interpretable parameters
facilitate the analysis of large neural population recordings.

4.3.2 Primate recordings

In this section, we apply bGPFA to biological data recorded from a rhesus macaque during
a self-paced reaching task with continuous recordings spanning 30 minutes (52, 47; Fig-
ure 4.3A). The continuous nature of these recordings as one long trial makes it a challenging
dataset for existing analysis methods that explicitly require the availability of many trials per
experimental condition [53], and poses computational challenges to Gaussian process-based
methods that cannot handle long time series [78]. While the ad-hoc division of continuous
recordings into surrogate trials can still enable the use of these methods [38], here we show
that our formulation of bGPFA readily applies to long continuous recordings. We fitted
bGPFA with a negative binomial noise model to recordings from both primary motor cortex
(M1) and primary somatosensory cortex (S1). For all analyses, we used a single recording
session (indy_20160426, as in 38), excluded neurons with overall firing rates below 2 Hz,
and binned data at 25 ms resolution. This resulted in a data array YYY ∈ R200×70482 (130 M1
neurons and 70 S1 neurons).

We first fitted bGPFA independently to the M1 and S1 sub-populations with D = 25
latent dimensions. In this case, ARD retained 20 (M1) and 13 (S1) dimensions (Figure 4.3B).
We then proceeded to train a linear decoder to predict hand kinematics in the form of x
and y hand velocities from either the inferred firing rates or the raw data convolved with a
50 ms Gaussian kernel (38; Appendix B.12). We found that the model learned by bGPFA
predicted kinematics better than the convolved spike trains, suggesting that (i) the latent space
accurately captures kinematic representations, and (ii) the denoising and data-sharing across
time in bGPFA aids decodability beyond simple smoothing of neural activity. Interestingly,
by repeating this decoding analysis with an artificially imposed delay between neural activity
and decoded behavior, we found that neurons in S1 predominantly encoded current behavior
while neurons in M1 encoded a motor plan that predicted kinematics 100-150 ms into the
future (Figure 4.3B). This is consistent with the motor neuroscience literature suggesting
that M1 functions as a dynamical system driving behavior via downstream effectors [12].

We then fitted bGPFA to the entire dataset including both M1 and S1 neurons and
found that kinematic predictions improved over individual M1- and S1-based predictions
(Figure 4.3B). In this analysis, the decoding performance as a function of delay between
neural activity and behavior exhibited a broader peak than for the single-region decoding.
We hypothesized that this broad peak reflects the fact that these neural populations encode
both current behavior in S1 as well as future behavior in M1 (Figure 4.3C). Indeed when
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we took this offset into account by shifting all M1 spike times by +100 ms and retraining
the model, decoding performance increased (69.22%±0.06 vs. 67.84%±0.07 mean ± sem
variance explained across ten model fits; Appendix B.12). Additionally, the shifted data
exhibited a narrower decoding peak now attained for near-zero delay between kinematics and
latent trajectories (Figure 4.3D). Consistent with the improved kinematic decoding, we also
found that shifting M1 spikes by 100 ms increased the ELBO per neuron (−34882.77±0.39
vs. −34893.18±0.71) and approximately minimized the linear dimensionality of the data
(Appendix B.4; 58).

We next wondered if bGPFA could be used to reveal putative motor preparation pro-
cesses, which is non-trivial due to the lack of trial structure and well-defined preparatory
epochs. We partitioned the data post-hoc into individual ‘reaches’, each consisting of a
period of time where the target location remained constant. For these analyses, we only
considered ‘successful’ reaches where the monkey eventually moved to the target location
(Appendix B.3), and we defined movement onset as the first time during a reach where the
cursor speed exceeded a low threshold (Appendix B.1). We began by visualizing the latent
processes inferred by bGPFA as they unfolded prior to movement onset in each reach epoch.
For visualization purposes, we ranked the latent dimensions based on their learned prior
scales (a measure of variance explained; Appendix B.9) and selected the first two. Prior
to movement onset, the latent trajectories tended to progress from their initial location at
target onset towards reach-specific regions of state space (see example trials in Figure 4.3E
for leftward and rightward reaches). To quantify this phenomenon, we computed pairwise
similarities between latent states across all 681 reaches, during (i) stimulus onset and (ii)
75 ms before movement onset (chosen such that it is well before any detectable movement;
Appendix B.1). We defined similarity as the negative Euclidean distance between latent
states and restricted the analysis to ‘fast’ latent dimensions with timescales smaller than
200 ms to study this putatively fast process. When plotted as a function of reach direction,
the latent similarities at target onset showed little discernable structure (Figure 4.3F, left).
In contrast, the pairwise similarities became strongly structured 75 ms before movement
onset where neighboring reach directions were associated with similar preparatory latent
states (Figure 4.3F, right). Similar, albeit noisier, results were found when using factor
analysis instead of bGPFA (Appendix B.1). These findings are consistent with previous
reports of monkey M1 partitioning preparatory and movement-related activity into distinct
subspaces [22, 42], as well as with the analogous finding that a ‘relative target’ subspace is
active before a ‘movement subspace’ in previous analyses of this particular dataset [38].

Previous work on delayed reaches has shown that monkeys start reaching earlier when
the neural state attained at the time of the go cue – which marks the end of a delay period
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A B C D
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Fig. 4.3 Bayesian GPFA applied to primate data. (A) Schematic illustration of the self-
paced reaching task. When a target on a 17x8 grid is reached (arrows), a new target lights
up on the screen (colours), selected at random from the remaining targets (8x8 grid shown
for clarity). In several analyses, we classify movements according to reach angle measured
relative to horizontal (θ1, θ2). (B) Learned mean and scale parameters for the bGPFA
models. Small prior scales sd and posterior mean parameters (||νννd||22) indicate uninformative
dimensions (Appendix B.9). (C) We applied bGPFA to monkey M1 and S1 data during the
task and trained a linear model to decode kinematics from firing rates predicted from the
inferred latent trajectories with different delays between latent states and kinematics. Neural
activity was most predictive of future behavior in M1 (black) and current behavior in S1
(blue). Dashed lines indicate decoding from the raw data convolved with a Gaussian filter.
(D) Decoding from bGPFA applied to the combined M1 and S1 data (cyan). Performance
improved further when decoding from latent trajectories inferred from data where M1 activity
was shifted by 100 ms relative to S1 activity (green). (E) Example trajectories in the two
most informative latent dimensions for five rightward reaches (grey) and five leftward reaches
(red). Trajectories are plotted from the appearance of the stimulus until movement onset
(circles). During ‘movement preparation’, the latent trajectories move towards a consistent
region of latent state space for each reach direction. (F) Similarity matrix of the latent
state at stimulus onset showing no obvious structure (left) and 75 ms prior to movement
onset showing modulation by reach direction (right). (G) Reaction time plotted against
Euclidean distance between the latent state at target onset and the mean preparatory state for
the corresponding reach direction (ρ = 0.424).

with a known reach direction – is close to an “optimal subspace” [1, 35]. We wondered
if a similar effect takes place during continuous, self-initiated reaching in the absence of
explicit delay periods. Based on Figure 4.3E, we hypothesized that the monkey should start
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moving earlier if, at the time the next target is presented, its latent state is already close
to the mean preparatory state for the required next movement direction. To test this, we
extracted the mean preparatory state 75 ms prior to movement onset (as above) for each
reach direction in the dataset. We found that the distance between the latent state at target
onset and the corresponding mean preparatory state was strongly predictive of reaction
time (RT; Figure 4.3G, Pearson ρ = 0.424, p = 3× 10−29). Such a correlation was also
weakly present with factor analysis (ρ = 0.21, p = 9×10−8) but not detectable in the raw
data (ρ = 0.02, p = 0.6). We also verified that the strong correlation found with bGPFA
was not an artifact of the temporal correlations introduced by the prior (Appendix B.2).
Taken together, our results suggest that motor preparation is an important part of reaching
movements even in an unconstrained self-paced task. Additionally, we showed that bGPFA
captures such behaviorally relevant latent dynamics better than simpler alternatives, and our
scalable implementation enables its use on the large continuous reaching dataset analysed
here.

Finally we noted that some latent dimensions had long timescales on the order of 2
seconds, which is longer than the timescale of individual reaches (1-2 seconds; Appendix B.2).
We hypothesized that these slow dynamics might reflect motivation or task engagement.
Consistent with this hypothesis, we found that the slowest latent process (τ = 2.1 s) was
correlated with reaction time during successful reaches (Pearson ρ = 0.383, p = 1.1×10−23)
and strongly modulated during a longer period of time where the monkey did not reach to
any targets (Appendix B.3). Interestingly, the information contained about reaction time
in this long timescale latent dimension was largely complementary to that encoded by the
distance to preparatory states in the ‘fast’ dimensions (Appendix B.2). We thus find that
bGPFA is capable of capturing not only single-reach dynamics and preparatory activity but
also processes on longer timescales that would be difficult to identify with methods designed
for the analysis of many shorter trials.

4.4 Discussion

Related work The generative model of bGPFA can be considered an extension of the
canonical GPFA model proposed by Yu et al. [78] to include a Gaussian prior over the
loading matrix CCC (Section 4.2.1). In this view, bGPFA is to GPFA what Bayesian PCA
is to PCA [7]; in particular, it facilitates automatic relevance determination to infer the
dimensionality of the latent space from data [7, 50, 65]. Additionally, we utilize advances in
variational inference [40, 59] to make the algorithm scalable to the large datasets recorded
in modern neuroscience. In particular, we contribute a novel form of circulant variational
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GP posterior that is both accurate and scalable. Similar to previous work by Duncker
and Sahani [19] and Zhao and Park [80], variational inference also facilitates the use of
arbitrary observation noise models, including non-Gaussian models more appropriate for
electrophysiological recordings. Furthermore, our method is an extension of work on
Gaussian process latent variable models (GPLVMs) [43, 65] which have recently found use
in the neuroscience literature as a way of modelling flexible, nonlinear tuning curves [77, 33].
This is because integrating out the loading matrix in p(YYY |XXX) with a Gaussian prior gives
rise to a Gaussian process, here with a linear kernel. The low-rank structure of this linear
kernel yields computationally cheap likelihoods, and our variational approach is equivalent
to the sparse inducing point approximation used in the stochastic variational GP (SVGP)
framework [27, 28]. In particular, our variational posterior is the same as that which would
arise in SVGP with at least D inducing points irrespective of where those inducing points are
placed (Appendix B.7). We also note that for a Gaussian noise model, the resulting low-rank
Gaussian posterior is in fact the form of the exact posterior distribution (Appendix B.6).
Additionally, since in bGPFA both the prior over latents and the observation model are GPs,
bGPFA is an example of a deep GP [16], in this case with two layers that use an RBF kernel
and a linear kernel respectively. Finally, our parameterizations of the posteriors q(xxxd) and
q( fff n) can be viewed as variants of the ‘whitening’ approach introduced by Hensman et al.
[29] which both facilitates efficient computation of the KL terms in the ELBOs and also
stabilizes training (Section 4.2.2).

Conclusion In summary, bGPFA is an extension of the popular GPFA model in neuro-
science that allows for regularized, scalable inference and automatic determination of the
latent dimensionality as well as the use of non-Gaussian noise models more appropriate for
neural recordings. Importantly, the hyperparameters of bGPFA are efficiently optimized
based on the ELBO on training data which alleviates the need for cross-validation or com-
plicated algorithms otherwise used for hyperparameter optimization in overparameterized
models [33, 77, 78, 37, 38, 24]. Our approach can also be extended in several ways to make
it more useful to the neuroscience community. For example, replacing the spike count-based
noise models with a point process model would provide higher temporal resolution [19],
and facilitate inference of optimal temporal delays across neural populations [41] which
will likely be useful as multi-region recordings become more prevalent in neuroscience [36].
Additionally, by substituting the linear kernel in p(YYY |XXX) for an RBF kernel in Euclidean
space [77] or on a non-Euclidean manifold [33], we can recover scalable versions of recent
GPLVM-based tools for neural data analyses with automatic relevance determination.



Chapter 5

Application and Comparison of Scalable
GPFA Methods

In this chapter, I compare the methods discussed in Chapters 3 and 4 on real neural data.

5.1 Self-paced reaching in non-human primates

In Section 4.3.1 we showed that, with synthetic data, bGPFA with ARD recovers the correct
dimensionality. Here I repeat this analysis on real primate reaching data on models with
Gaussian likelihoods, and compare the performance of iterative GPFA (Section 3.2.2) to
that of bGPFA. Overall, bGPFA performs well both with and without ARD, and ARD
retains a few more dimensions than could be inferred by model selection of the non-ARD
version based on cross-validated mean squared prediction error (Figure 5.1B). Iterative GPFA,
however, does not perform as well as either bGPFA models.

5.1.1 Details

I trained models on 125 seconds of data with 25 ms resolution (T = 5000). I used the first
125 seconds of the “indy_20160627_01” dataset which consists of an hour-long recording.
I subselected neurons with a firing rate of 2Hz or more over the course of the recording,
resulting in 106 neurons. I took the square root of the spike counts to make the data
more appropriate for a Gaussian noise model and centered the data for each neuron before
extracting the first 125 seconds of activity.

I initialized all models using factor analysis, as follows. For iterative GPFA, the initial CCC
mixing matrix was set to a randomly rotated version of the loading matrix found by factor
analysis. For bGPFA, which does not represent the CCC matrix explicitly, factor analysis was
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used to initialize both the variational distribution over the latents and the ARD scale factors.
I trained five instances of each model with different random seeds, affecting the random
unitary transform of CCC, Monte Carlo sampling of the variational posterior in bGPFA, and the
probe vectors used for trace estimation in iterative GPFA.

The mean squared error in Figure 5.1B was computed on the subsequent 125 seconds of
data from the recording, computing the posterior over latents based on half of the neurons,
and calculating the mean squared error on posterior predictions for the other half of the
neurons.

bGPFA models with and without ARD were trained using 7501 training steps while
iterative GPFA was trained for 2001 training steps for reasons discussed in Section 5.1.3.
Inference was performed by re-optimizing the latent variational mean and covariance (µ̂µµn

and σ̂σσ
2
n respectively in Algorithm 2) over 3751 optimization steps, having frozen all other

model parameters. In contrast, iterative GPFA enables direct inference involving a single CG
solve, without requiring further gradient-based optimization.

Note that I ran bGPFA with ARD with D = 30.

5.1.2 Results

Iterative GPFA had a marginal log likelihood that increased with the number of dimensions,
whereas bGPFA without ARD had a marginal log likelihood that was maximized at D = 7.
This is to be expected as bGPFA is Bayesian over the mixing matrix, whereas iterative GPFA
is not. bGPFA also had a higher marginal log likelihood overall—this result was unexpected
as GPFA had a higher marginal log likelihood than bGPFA in Section 4.3.1 and the marginal
log likelihood shown for bGPFA is actually the lower bound on the marginal log likelihood.
This discrepancy result from the biased approximation to the log determinant used in iterative
GPFA (Table 3.1).

Iterative GPFA was significantly slower than bGPFA (Figure 5.1C) and had a higher
cross-validated mean squared prediction error relative to either bGPFA with or without ARD
(Figure 5.1B). The speed difference is due to the expensive repeated iterative calculations
made within the CG algorithm at each training step of iterative GPFA. While bGPFA and
iterative GPFA scaled similarly with D, the scaling factor is much larger for iterative GPFA.
The difference in mean squared prediction error is likely due to poor convergence in iterative
GPFA (discussed further in Section 5.1.3).

The difference in memory usage shown in Figure 5.1D between bGPFA with and without
ARD can be explained by the use of D = 30 in models with ARD, although those models
did eventually retain 11-12 dimensions only (as given by the learned ARD scale parameters;
Figure 5.1A-B).
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While the methods did not all recover the exact same number of latents as in Section 4.3.1,
they recovered similar numbers of latents, and some mismatch is to be expected as there was
model mismatch between the generative model and the true data.

Fig. 5.1 Performance of iterative GPFA and bGPFA on primate data across D. (A-
B) Marginal log likelihood and mean squared error of iterative GPFA, bGPFA, and bGPFA
without ARD on a self-paced primate reaching dataset (T = 5000,N = 106). (C-D) Train
time and peak active memory usage during training and inference. In contrast to Figure 3.3,
training time was measured less precisely over a larger range of computations, including
printing some periodic updates, and peak active memory usage was computed less precisely
over the full training and inference set of computations, without subtracting preexisting
memory cost. The computations are, however, comparable across methods and still serve as
a good comparison between iterative and Bayesian GPFA.

5.1.3 Discussion

Iterative GPFA models were trained for only 2001 training steps because the loss eventually
diverged for iterative GPFA models trained for 7501 steps. The reason for this divergence is
uncertain, but is likely related to an inappropriate setting of the learning rate. In particular,
a bug in the version of GPyTorch that I used (that has since been corrected) meant that
the loss was not scaled by the number of time-points. While I fixed this by dividing by
T in all results and figures shown, I did not correct this during training, so the learning
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rate found in Figure 3.1 with T = 100 likely did not generalize well here with T = 5000.
I thus ran iterative GPFA for 2001 steps which kept it in a realm where it had converged
but not yet diverged. Although I did not have time to look into this instability in detail,
it will be worth investigating in the future. Another source of error could be inaccurate
gradients—GPyTorch uses in-place updating through CG iterations in a ’jitted’ PyTorch
function, something PyTorch documentation warns can lead to incorrect gradients [55].

A good CG preconditioner and the resolution of this iterative GPFA instability could
improve the performance of iterative GPFA. Such a preconditioner could potentially also
reduce the time per training step by reducing the number of CG iterations needed to reach a
given accuracy tolerance. Nevertheless, I think this is unlikely to lead to significant speedups
given that CG currently converges to the specified tolerance within 100 CG iterations (whereas
naively it could take up to DT = 5000D iterations with this data).

bGPFA is more flexible than iterative GPFA overall. bGPFA is more flexible in terms of
the noise model—I used the Gaussian noise model in these experiments because the Negative
Binomial model applied in Section 4.3.2 is not tractable with the non-variational GPFA
implementations. bGPFA is also much more flexible in terms of memory usage because the
KL approximation enables batching by time points and by Monte Carlo samples—one can set
these batch sizes such that the computation fits within the available memory (Algorithm 2).
In contrast, the “exact” derivative of the loss computed by iterative GPFA here requires all
time points to be handled simultaneously (Algorithm 1).

I attempted to run iterative GPFA with the full hour-long dataset (T = 134517), however
doing so required mini-batching over probe vectors to alleviate memory load. This provided
memory savings but nearly quadrupled the duration of each training step to over 9 minutes,
because I could only compute three trace samples in memory at a time, so I had to perform all
CG computations four times. As mentioned in ref. 71, while CG does scale near-linearly with
T , it is still a very time-intensive computation. Due to limited compute resources, combined
with the suboptimal performance of iterative GPFA and the inability to use more appropriate
noise models with iterative GPFA, I decided not to fully train any iterative GPFA models
on the full dataset. I was able to train a bGPFA model with ARD and the Gaussian noise
model on the full dataset, anticipating comparing these results with iterative GPFA. I did not
present those results here because it would be more appropriate to perform the analysis with
a Negative Binomial noise model, and this was already done for a similar, slightly shorter,
dataset in Section 4.3.2.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In summary, I introduced two methods for scaling GPFA to many time-points for neural
data. Both methods scale near-linearly in time due to Toeplitz and Kronecker structure that
can be leveraged in binned neuroscientific data (Chapter 2). I demonstrated these methods
with T on the order of 105, i.e. three orders of magnitude larger than previous applications
(T ∼ 102). This scalability enabled the application of GPFA to long (up to hour-long) non-
trial structured recordings, and yielded latents that varied with timescales approximately
as long as individual reaches. These methods are not, however, restricted to datasets with
regularly spaced inputs—datasets with irregularly spaced inputs can still make use of the
methods introduced here using the methods described in ref. 76.

I began by introducing a scalable version of “exact” GPFA that I termed iterative GPFA
following refs. 17 and 3 (Chapter 3). I then introduced an approximate variational GPFA
method with additional features including a Bayesian prior over the mixing matrix C, auto-
matic relevance determination, and support for otherwise intractable likelihood models that
are more appropriate to neuroscience, such as the Negative Binomial noise model Chapter 4.
I then compared these two methods, concluding that bGPFA scales more readily without
a loss in performance compared to iterative GPFA, although proposed future work could
potentially shift this balance (Chapter 5 and section 6.2).
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6.2 Future Work

The additional benefits afforded by the approximate variational approach for neuroscientific
purposes make me doubtful that iterative GPFA even with future work would become
preferable to bGPFA, however future work is needed to verify this.

In order to make iterative GPFA more feasible on extremely large datasets with T > 105,
the issues with numerical instabilities in convergence as discussed in Section 5.1 must first
be resolved. Suggestions by [3] for improving stopping criterion for CG and for better
initialization (from the value at the previous training step) could significantly reduce the
time required by CG methods by reducing the number of iterations each CG solve requires.
Additionally, a non-memory intensive preconditioner could also reduce the time cost of
CG significantly and potentially mitigate the training instabilities encountered with iterative
GPFA.

I look forward to seeing what neuroscientific insights bGPFA and related scalable methods
yield when applied to a broader array of large neural datasets.
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Appendix A

Iterative GPFA Appendix

A.1 Iterative GPFA Pseudocode

In this section I provide pseudocode for iterative GPFA (Algorithm 1) leveraging Toeplitz
(gridded) structure.

Note in Line 15 that I define my vector of timepoints to be unit timepoints, so the
timescales learned will be in units of timesteps. These can be scaled by the timestep size to
get the timescales in terms of seconds or milliseconds.

In Line 17 I calculate vec−1(KKKxxvec(CCCTVVV )) which appears in Equation 2.6. In particular,
I rewrite Equation 2.3 directly using column indexing in place of eeeieeeT

i and vstack in place of
the summation as described in the text following Equation 2.3.
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Algorithm 1: Iterative GPFA Leveraging Toeplitz Structure
1 input: neuron-wise mean-subtracted data YYY ∈ RN×T , latent dimensionality D, # trace

samples s, CG tolerance ε , learning rate γ , kernel functions {Ki}D
1

2 parameters: θ = {CCC,{Rn,n}N
1 ,{kd}D

1 }
3

4 % solve for bbb in AAAbbb = ccc
5 % A_mult is a function for computing vector products with AAA [30]
6 def CG(A_mult, ccc):
7 bbb← 000
8 while ∥ccc−A_mult(bbb)∥2

∥ccc∥2
> ε do

9 bbb← update according to CG algorithm using A_mult for AAAvvv computations

10 return bbb

11

12 % compute KKKyyvvv products (Section 2.2)
13 def Kyy_mult(vvv):
14 % WLOG use timesteps of unit length
15 ttt← [1,2, ...,T −1,T ]
16 VVV ← vec−1(vvv)
17 % Calculate vec−1(KKKxxvec(CCCTVVV ))

18 XXX ← vstack
(
[(toeplitz_mult(Ki(ttt,1),(VVV TCCC)i)

T )]Di=1
)

19 return vec(CCCXXX)+vec(RRRVVV )

20

21 while not converged do
22 % calculate K−1

yy loss term (Section 3.1.1)
23 LKKK−1

yy
← vec(YYY )TCG(Kyy_mult,vec(YYY ))

24 % calculate |KKKyy| (Section 3.1.2)
25 ggg← 000
26 for i=1:s do
27 ξξξ ← random vector, each entry randomly and evenly sampled from {−1,1}
28 zzz←CG(Kyy_mult,ξξξ )
29

30 % differentiate through zzzT Kyy_mult(ξξξ ) treating zzz as a constant to avoid
differentiating through CG

31 ggg← ggg+∇zzzT Kyy_mult(ξξξ )

32

33 ∇L|KKKyy|←
ggg
s

34

35 % update parameters based on total gradients (I used Adam in practice)
36 θ ← θ + γ(−∇L|KKKyy|−∇LKKK−1

yy
)
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A.2 GPyTorch GPFA implementation code

This section includes the code added to GPyTorch to implement GPFA. This code is also
available on GitHub on my fork of GPyTorch, where relative imports work
(https://github.com/syncrostone/gpytorch/tree/gpfa-newer-base).

1 i m p o r t t o r c h
2

3 from . . l a z y i m p o r t DiagLazyTensor , Kronecke rP roduc tLazyTenso r , l a z i f y
4 from . k e r n e l i m p o r t K e rn e l
5

6 c l a s s GPFAComponentKernel ( Ke r ne l ) :
7 r " " "
8 K er ne l s u p p o r t i n g G a u s s i a n P r o c e s s F a c t o r A n a l y s i s u s i n g
9 : c l a s s : ‘ g p y t o r c h . k e r n e l s . GPFAComponentKernel ‘ a s a b a s i c GPFA

l a t e n t k e r n e l .
10

11 Given a base c o v a r i a n c e module t o be used f o r a l a t e n t , : math : ‘ K_{XX
} ‘ , t h i s k e r n e l computes a l a t e n t k e r n e l o f

12 s p e c i f i e d s i z e : math : ‘K_MM} ‘ t h a t i s z e r o s eve rywhere e x c e p t : math : ‘
K_{ k e r n e l _ l o c , k e r n e l _ l o c } ‘ and r e t u r n s

13 : math : ‘K = K_{MM} \ o t i m e s K_{XX} ‘ . a s an : o b j : ‘ g p y t o r c h . l a z y .
Kronecke rP roduc tLazyTenso r ‘ .

14

15 : param ~ g p y t o r c h . k e r n e l s . Ke r ne l d a t a _ c o v a r _ m o d u l e : K e r ne l t o use as
t h e l a t e n t k e r n e l .

16 : param i n t n u m _ l a t e n t s : Number o f l a t e n t s (M)
17 : param i n t k e r n e l _ l o c : L a t e n t number t h a t t h i s k e r n e l r e p r e s e n t s .
18 : param d i c t kwargs : A d d i t i o n a l a rgumen t s t o p a s s t o t h e k e r n e l .
19 " " "
20

21 d e f _ _ i n i t _ _ ( s e l f , da t a_cova r_modu le , n u m _ l a t e n t s , k e r n e l _ l o c , **
kwargs ) :

22 s u p e r ( GPFAComponentKernel , s e l f ) . _ _ i n i t _ _ (** kwargs )
23 t a s k _ d i a g = t o r c h . z e r o s ( n u m _ l a t e n t s )
24 t a s k _ d i a g [ k e r n e l _ l o c ] = 1
25 s e l f . r e g i s t e r _ b u f f e r ( " t a s k _ d i a g " , t a s k _ d i a g )
26 s e l f . d a t a _ c o v a r _ m o d u l e = d a t a _ c o v a r _ m o d u l e
27 s e l f . n u m _ l a t e n t s = n u m _ l a t e n t s
28

29 d e f f o r w a r d ( s e l f , x1 , x2 , d i a g = F a l s e , l a s t _ d i m _ i s _ b a t c h = F a l s e , **
params ) :

30 i f l a s t _ d i m _ i s _ b a t c h :

https://github.com/syncrostone/gpytorch/tree/gpfa-newer-base
https://github.com/syncrostone/gpytorch/tree/gpfa-newer-base
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31 r a i s e R u n t i m e E r r o r ( " GPFAComponentKernel does n o t a c c e p t t h e
l a s t _ d i m _ i s _ b a t c h argument . " )

32 c o v a r _ i = DiagLazyTensor ( s e l f . t a s k _ d i a g )
33 i f l e n ( x1 . shape [ : −2 ] ) :
34 c o v a r _ i = c o v a r _ i . r e p e a t (* x1 . shape [ : −2 ] , 1 , 1 )
35 cova r_x = l a z i f y ( s e l f . d a t a _ c o v a r _ m o d u l e . f o r w a r d ( x1 , x2 , ** params

) )
36 r e s = K r o n e c k e r P r o d u c t L a z y T e n s o r ( covar_x , c o v a r _ i )
37 r e t u r n r e s . d i a g ( ) i f d i a g e l s e r e s
38

39 d e f n u m _ o u t p u t s _ p e r _ i n p u t ( s e l f , x1 , x2 ) :
40 " " "
41 Given ‘n ‘ d a t a p o i n t s ‘ x1 ‘ and ‘m‘ d a t a p o i n t s ‘ x2 ‘ , t h i s
42 k e r n e l r e t u r n s an ‘ ( n* n u m _ l a t e n t s ) x (m* n u m _ l a t e n t s ) ‘ c o v a r i a n c e

m a t r i x .
43 " " "
44 r e t u r n s e l f . n u m _ l a t e n t s

Code Example A.1 GPyTorch GPFA component kernel.

1 from copy i m p o r t deepcopy
2

3 i m p o r t t o r c h
4

5 from . . l a z y i m p o r t DiagLazyTensor , K r o n e c k e r P r o d u c t L a z y T e n s o r
6 from . g p f a _ c o m p o n e n t _ k e r n e l i m p o r t GPFAComponentKernel
7 from . k e r n e l i m p o r t A d d i t i v e K e r n e l , Ke rn e l
8

9 c l a s s GPFAKernel ( Ke rn e l ) :
10 r " " "
11 K er ne l s u p p o r t i n g G a u s s i a n P r o c e s s F a c t o r A n a l y s i s u s i n g
12 : c l a s s : ‘ g p y t o r c h . k e r n e l s . GPFAComponentKernel ‘ a s a b a s i c GPFA l a t e n t

k e r n e l .
13

14 Given base c o v a r i a n c e modules t o be used f o r t h e l a t e n t s , : math : ‘ k_i
‘ , t h i s k e r n e l

15 p u t s t h e base c o v a r i a n c e modules i n a b l o c k d i a g o n a l w i th : math : ‘M‘
b l o c k s as : math : ‘ K_{XX} ‘ .

16 Thi s d e f i n e s : math : ‘C \ i n MxN‘ and r e t u r n s : math : ‘ ( I_T \ o t i m e s C) K_{
XX} ( I_T \ o t i m e s C) ^T ‘ as an

17 : o b j : ‘ g p y t o r c h . l a z y . L a z y E v a l u a t e d K e r n e l T e n s o r ‘ .
18

19 : param ~ g p y t o r c h . k e r n e l s . Ke rn e l d a t a _ c o v a r _ m o d u l e : K e r ne l t o use as
t h e l a t e n t k e r n e l .

20 : param i n t n u m _ l a t e n t s : Number o f l a t e n t s (M) .
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21 : param i n t num_obs : Number o f o b s e r v a t i o n d i m e n s i o n s ( t y p i c a l l y , t h e
number o f neurons , N) .

22 : param ~ g p y t o r c h . k e r n e l s . Ke r ne l GPFA_component : ( d e f a u l t
GPFAComponentKernel ) K e r ne l t o use t o s c a l e t h e l a t e n t

23 k e r n e l s t o t h e n e c e s s a r y shape .
24 GPFAComponentKernel i s c u r r e n t l y t h e on ly o p t i o n ; i f non−r e v e r s i b l e

k e r n e l s a r e l a t e r added ,
25 t h e r e w i l l t h e n be a n o t h e r o p t i o n h e r e .
26 : param d i c t kwargs : A d d i t i o n a l a rgumen t s t o p a s s t o t h e k e r n e l .
27 " " "
28

29 d e f _ _ i n i t _ _ (
30 s e l f , d a t a _ c o v a r _ m o d u l e s , n u m _ l a t e n t s , num_obs , GPFA_component=

GPFAComponentKernel , ** kwargs ,
31 ) :
32 s u p e r ( GPFAKernel , s e l f ) . _ _ i n i t _ _ (** kwargs )
33 s e l f . num_obs = num_obs
34 s e l f . n u m _ l a t e n t s = n u m _ l a t e n t s
35

36 i f n o t i s i n s t a n c e ( d a t a _ c o v a r _ m o d u l e s , l i s t ) o r l e n (
d a t a _ c o v a r _ m o d u l e s ) == 1 :

37 i f i s i n s t a n c e ( d a t a _ c o v a r _ m o d u l e s , l i s t ) :
38 d a t a _ c o v a r _ m o d u l e s = d a t a _ c o v a r _ m o d u l e s [ 0 ]
39 d a t a _ c o v a r _ m o d u l e s = [ deepcopy ( d a t a _ c o v a r _ m o d u l e s ) f o r i i n

r a n g e ( n u m _ l a t e n t s ) ]
40

41 s e l f . l a t e n t _ c o v a r _ m o d u l e = A d d i t i v e K e r n e l (
42 *[ GPFA_component ( d a t a _ c o v a r _ m o d u l e s [ i ] , n u m _ l a t e n t s , i ) f o r

i i n r a n g e ( n u m _ l a t e n t s ) ]
43 )
44 s e l f . r e g i s t e r _ p a r a m e t e r ( name=" raw_C " , p a r a m e t e r = t o r c h . nn .

P a r a m e t e r ( t o r c h . r andn ( num_obs , n u m _ l a t e n t s ) ) )
45

46 @proper ty
47 d e f C( s e l f ) :
48 r e t u r n s e l f . raw_C
49

50 @C. s e t t e r
51 d e f C( s e l f , v a l u e ) :
52 i f n o t t o r c h . i s _ t e n s o r ( v a l u e ) :
53 v a l u e = t o r c h . a s _ t e n s o r ( v a l u e ) . t o ( s e l f . raw_C )
54

55 s e l f . i n i t i a l i z e ( raw_C= v a l u e )
56
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57 d e f f o r w a r d ( s e l f , x1 , x2 , d i a g = F a l s e , l a s t _ d i m _ i s _ b a t c h = F a l s e , **
params ) :

58 i f l a s t _ d i m _ i s _ b a t c h :
59 r a i s e R u n t i m e E r r o r ( " GPFAKernel does n o t y e t a c c e p t t h e

l a s t _ d i m _ i s _ b a t c h argument . " )
60 I _ t 1 = DiagLazyTensor ( t o r c h . o n e s _ l i k e ( t o r c h . s q u e e z e ( x1 ) ) )
61 I _ t 2 = DiagLazyTensor ( t o r c h . o n e s _ l i k e ( t o r c h . s q u e e z e ( x2 ) ) )
62 kron_prod_1 = K r o n e c k e r P r o d u c t L a z y T e n s o r ( I _ t 1 , s e l f . C)
63 kron_prod_2 = K r o n e c k e r P r o d u c t L a z y T e n s o r ( I _ t 2 , s e l f . C)
64 c o v a r = kron_prod_1 @ s e l f . l a t e n t _ c o v a r _ m o d u l e ( x1 , x2 , ** params )

@ kron_prod_2 . t ( )
65 r e t u r n c o v a r . d i a g ( ) i f d i a g e l s e c o v a r
66

67 d e f n u m _ o u t p u t s _ p e r _ i n p u t ( s e l f , x1 , x2 ) :
68 " " " ‘
69 Given ‘n ‘ d a t a p o i n t s ‘ x1 ‘ and ‘m‘ d a t a p o i n t s ‘ x2 ‘ , t h i s
70 k e r n e l r e t u r n s an ‘ ( n*num_obs ) x (m*num_obs ) ‘ c o v a r i a n c e m a t r i x .
71 " " "
72 r e t u r n s e l f . num_obs
73

Code Example A.2 GPyTorch GPFA kernel.

1 i m p o r t t o r c h
2

3 i m p o r t g p y t o r c h
4 from g p y t o r c h . k e r n e l s i m p o r t GPFAKernel
5 from g p y t o r c h . l a z y i m p o r t DiagLazyTensor , Kronecke rP roduc tLazyTenso r ,

Kronecke rP roduc tDiagLazyTenso r , AddedDiagLazyTensor
6

7 c l a s s GPFAModel ( g p y t o r c h . models . ExactGP ) :
8 d e f _ _ i n i t _ _ ( s e l f , t r a i n _ x , t r a i n _ y , l i k e l i h o o d ,

l a t e n t _ c o v a r _ m o d u l e s , n u m _ l a t e n t s , num_obs ) :
9 s u p e r ( GPFAModel , s e l f ) . _ _ i n i t _ _ ( t r a i n _ x , t r a i n _ y , l i k e l i h o o d )

10

11 s e l f . n u m _ l a t e n t s = n u m _ l a t e n t s
12 s e l f . num_obs = num_obs
13

14 s e l f . mean_module = g p y t o r c h . means . Mul t i t a skMean (
15 g p y t o r c h . means . ZeroMean ( ) , num_tasks =num_obs
16 )
17 s e l f . covar_module = GPFAKernel (
18 l a t e n t _ c o v a r _ m o d u l e s , n u m _ l a t e n t s , num_obs )
19

20 d e f f o r w a r d ( s e l f , x ) :
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21 r e t u r n g p y t o r c h . d i s t r i b u t i o n s . M u l t i t a s k M u l t i v a r i a t e N o r m a l (
22 s e l f . mean_module ( x ) , s e l f . covar_module ( x ) )
23

24 d e f g e t _ c o m b i n e d _ n o i s e s ( s e l f ) :
25 " " " combines t h e t a s k and t h e g l o b a l n o i s e t o g i v e one l i s t o f

n o i s e v a l u e s i n R" " "
26 r e t u r n ( s e l f . l i k e l i h o o d . t a s k _ n o i s e s i f s e l f . l i k e l i h o o d .

h a s _ t a s k _ n o i s e
27 e l s e t o r c h . z e r o s (
28 s e l f . l i k e l i h o o d . num_tasks ) ) + (
29 s e l f . l i k e l i h o o d . n o i s e
30 i f s e l f . l i k e l i h o o d . h a s _ g l o b a l _ n o i s e e l s e 0 )
31

32 d e f l a t e n t _ p o s t e r i o r ( s e l f , x , t r a i n _ y = None , obs_dims = None ,
mean_only = True , p r e c o n d i t i o n e r _ o v e r r i d e =None ) :

33 " " "
34 See Equations 1.13 and 1.14
35 " " "
36 i f t r a i n _ y i s None :
37 t r a i n _ y = s e l f . t r a i n _ t a r g e t s
38

39 i f obs_dims i s None :
40 obs_dims = r a n g e ( s e l f . num_obs )
41

42 I _ t = DiagLazyTensor ( t o r c h . ones ( l e n ( x ) , d t y p e = s e l f . covar_module .
C . d type , d e v i c e = x . d e v i c e ) )

43

44 combined_no i se = s e l f . g e t _ c o m b i n e d _ n o i s e s ( ) [ obs_dims ]
45

46 C_Kron_I = K r o n e c k e r P r o d u c t L a z y T e n s o r ( I _ t , s e l f . covar_module . C[
obs_dims ] )

47

48 Kxx = s e l f . covar_module . l a t e n t _ c o v a r _ m o d u l e ( x )
49

50 # t h e f i r s t t e rm of Kyy i s s p e c i f i c t o GPFA Kernel , be c a r e f u l
i f a dd i ng n o n r e v e r s i b l e

51 Kyy = AddedDiagLazyTensor ( C_Kron_I @ Kxx @ C_Kron_I . t ( ) ,
K r o n e c k e r P r o d u c t D i a g L a z y T e n s o r (

52 I _ t , DiagLazyTensor ( combined_no i se ) ) ,
p r e c o n d i t i o n e r _ o v e r r i d e = p r e c o n d i t i o n e r _ o v e r r i d e )

53

54 mean_rhs = ( t r a i n _ y − s e l f . mean_module ( x ) [ : , obs_dims ] ) . view (
55 *( t r a i n _ y . numel ( ) ,
56 ) ) # v e r t i c a l l y s t a c k s a f t e r do ing t h e s u b t r a c t i o n
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57 l a t e n t _ m e a n = Kxx @ C_Kron_I . t ( ) @ Kyy . inv_matmul ( mean_rhs )
58 l a t e n t _ m e a n = l a t e n t _ m e a n . view ( * ( l e n ( x ) ,
59 i n t ( l a t e n t _ m e a n . shape [ 0 ] / l e n (

x ) ) ) )
60

61 i f mean_only :
62 r e t u r n l a t e n t _ m e a n
63 c o v _ r h s = C_Kron_I @ Kxx
64 l a t e n t _ c o v = Kxx − Kxx @ C_Kron_I . t ( ) @ Kyy . inv_matmul (
65 c o v _ r h s . e v a l u a t e ( ) )
66 r e t u r n g p y t o r c h . d i s t r i b u t i o n s . M u l t i t a s k M u l t i v a r i a t e N o r m a l (
67 l a t e n t _ m e a n , l a t e n t _ c o v )

Code Example A.3 GPyTorch GPFA model.

1 i m p o r t t o r c h
2 i m p o r t g p y t o r c h
3 from s k l e a r n . d e c o m p o s i t i o n i m p o r t F a c t o r A n a l y s i s a s FA
4

5 d e f g p f a _ f a _ i n i t ( model , Y, l e n _ i n i t , gr id_mode = F a l s e ) :
6 n_samples_ fa , n_fa , m_fa = Y. shape
7

8 # F i t a f a c t o r a n a l y s i s model
9 mod = FA( n_components=model . n u m _ l a t e n t s )

10 Y_fa = Y. t r a n s p o s e ( 0 , 2 , 1 ) . r e s h a p e ( n _ s a m p l e s _ f a * m_fa , n_ fa )
11 mudata = mod . f i t _ t r a n s f o r m ( Y_fa ) #m* n_samples x d
12

13 # Apply a random u n i t a r y t r a n s f o r m t o t h e C m a t r i x and i n i t i a l i z e C
14 C = t o r c h . t e n s o r ( mod . components_ . T ) # ( n x d )
15 Q, R = t o r c h . q r ( t o r c h . normal ( mean= t o r c h . z e r o s ( ( model . n u m _ l a t e n t s ,

model . n u m _ l a t e n t s ) , d t y p e = t o r c h . d ou b l e ) , s t d =1) )
16 C = C@Q
17 model . covar_module . C = C
18

19 # Ensure n o i s e t o t a l i s > . 1 when i n i t i a l i z i n g from FA
20 n o i s e = t o r c h . t e n s o r ( mod . n o i s e _ v a r i a n c e _ )
21 model . l i k e l i h o o d . t a s k _ n o i s e s = t o r c h . t e n s o r ( [ max ( n o i s e [ i ] − ( . 0 5 + 1 e

−4) , ( . 0 5 + 1e−4) ) f o r i i n r a n g e ( l e n ( n o i s e ) ) ] )
22 model . l i k e l i h o o d . n o i s e = . 0 5 + 1e−4
23

24 # I n i t i a l i z e l e n g t h s c a l e s wi th t h e s p e c i f i e d l e n _ i n i t
25 i f gr id_mode :
26 f o r i i n r a n g e ( model . n u m _ l a t e n t s ) :
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27 model . covar_module . l a t e n t _ c o v a r _ m o d u l e . k e r n e l s [ i ] .
d a t a _ c o v a r _ m o d u l e . b a s e _ k e r n e l . l e n g t h s c a l e = t o r c h . t e n s o r ( l e n _ i n i t ,
d t y p e = t o r c h . do ub l e )

28 e l s e :
29 f o r i i n r a n g e ( model . n u m _ l a t e n t s ) :
30 model . covar_module . l a t e n t _ c o v a r _ m o d u l e . k e r n e l s [ i ] .

d a t a _ c o v a r _ m o d u l e . l e n g t h s c a l e = t o r c h . t e n s o r ( l e n _ i n i t , d t y p e = t o r c h .
do ub l e )

Code Example A.4 GPyTorch GPFA initialization from Factor Analysis.



Appendix B

BGPFA Appendix

B.1 Further analyses of preparatory dynamics in the con-
tinuous reaching task

We performed analyses as in Figure 4.3f using the raw data (YYY ) and using factor analysis (FA)
with a latent dimensionality matched to that inferred by bGPFA instead of using the bGPFA
latent states. The raw data YYY showed a high degree of similarity at target onset compared
to movement onset, but little discernable structure as a function of reach direction at either
point in time (Figure B.1a-b).

While the FA latent distances exhibited no modulation by reach direction at target onset,
FA did discover weak modulation at movement onset (Figure B.1a-b). This is qualitatively
consistent with our results using bGPFA but with a lower signal to noise ratio. Here and in
Section 4.3.2, we defined movement onset as the first time during a reach where the cursor
velocity exceeded 0.025ms−1, and we observed little to no quantifiable movement before
this point (Figure B.1f). We also discarded ‘trials’ with premature movement for all analyses
here and in Section 4.3.2, which we defined as reaches with a reaction time of 75 ms or less.

To quantify and compare how neural activity was modulated by the similarity of reach
directions for different analysis methods, we first computed z-scores of the similarity matrices
for both the bGPFA latent states, raw activity, and the latent states from FA. z-scores were
calculated as z = (SSS−mean(SSS))/std(SSS) for each similarity matrix SSS, and the diagonal
elements were excluded for this analysis. We then computed the mean of the z-scored
pairwise similarities as a function of difference in reach direction across all pairs of 681
reaches. We found that none of the datasets exhibited notable modulation at target onset
(Figure B.1e). In contrast, the neural data exhibited modulation by reach similarity 75 ms
prior to movement onset. This modulation was strongest for the bGPFA latent states followed
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Fig. B.1 Further analyses of M1 preparatory dynamics. (A-D) Similarity matrix of raw
neural activity YYY (A & B) and latent states found by FA (C & D) at target onset (A & C)
and 75 ms prior to movement onset (B & D), with analyses performed as in Figure 4.3F.
(E) z-scored similarity as a function of difference in reach direction; here, the mean similarity
across pairs of reaches is shown at target onset (left) and 75 ms prior to movement onset
(right). The bGPFA latent states show much stronger modulation than either raw neural
activity (YYY ) or latent states from FA. (F) Modulation of similarity by reach direction as a
function of time from movement onset. Modulation was defined as the difference between
maximum and minimum z-scored similarity as a function of difference in reach direction
(peak-to-trough in panel E). Blue solid line indicates the z-scored hand speed, confirming
the absence of premature movement relative to our definition of movement onset. bGPFA
latent similarity increases well before hand speed and starts decreasing substantially before
the hand speed peaks. Dashed lines indicate modulation at target onset for each method.

by the FA latents, and the modulation by reach similarity was very weak for the raw neural
activity (Figure B.1e). To see how this modulation by reach direction varied as a function of
time from movement onset, we computed the difference between the maximum and minimum
of the modulation curves and repeated this analysis for various delays. We found that the
modulation in neural activity space increased much before any detectable movement, with
bGPFA showing the strongest signal followed by factor analysis and then the raw activity
(Figure B.1f). Indeed, the bGPFA latent modulation was maximized at movement onset
while the reach speed did not peak until several hundred milliseconds after movement onset
where bGPFA latent trajectories have started to diverge again. Taken together, these results
confirm that our analyses of bGPFA preparatory states do not reflect premature movement
onset, and that they are not artifacts of the temporal correlations introduced by our GP prior
since noisier but qualitatively similar results arise from the use of factor analysis.
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B

C D

A

Fig. B.2 Further reaction time analyses. (A) Histogram of reaction time across all succes-
ful reaches. For our correlation analyses, we only considered reaches with a reaction time
between 125 ms and 425 ms (blue vertical lines). (B) Pearson correlations between distance
to prep state and reaction time in synthetic data. Histogram corresponds to correlations
between the true reaction times and 50,000 draws from the learned generative model. Blue
dashed line indicates mean across all synthetic datasets (0.028) which is much smaller than
the observed correlation in the experimental data of 0.424 (blue solid line). (C) Histogram of
reach durations for all reaches with a reaction time between 125 ms and 425 ms. (D) Plot of
reaction time against the value of the latent dimension with the longest timescale (τ = 2.1 s)
at target onset.

B.2 Further reaction time analyses

For analyses of correlations between latent distances and reaction times, we only considered
reaches with a reaction time of at least 125 ms and at most 425 ms which retained 638 of
681 reaches (Figure B.2a). This is because very long reaction times may reflect the monkey
not being fully engaged with the task during those reaches, and very short reaction times
may reflect spurious movement. To confirm that our finding of a strong correlation between
latent distance and reaction time in Figure 4.3g is not an artifact of the temporal correlations
introduced by the bGPFA generative model, we generated a synthetic control. Here we
drew 50,000 synthetic latent trajectories from our learned generative model with trajectory
durations matched to those observed experimentally on each trial. We then computed mean
preparatory states and latent distances to preparatory states as in the experimental data
(Section 4.3.2). We found a mean correlation of 0.028 and a range of −0.14 to 0.18 in the
synthetic data, suggesting that our generative model may introduce weak correlations between
latent distances and reaction times. However, the experimentally observed correlation of
0.424 was much larger than what could be expected by chance, verifying that the distance
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from the latent state at target onset to the corresponding preparatory state has behavioral
relevance with better initial states leading to shorter reaction times.

Although we already find a fairly strong relationship between these latent states and
reaction times, it is worth noting that several additional considerations may further improve
such predictions. Notably, our naïve measure of Euclidean latent distances could be improved
by instead defining a metric based on the probabilistic model itself [67]. Additionally, while
we divide reaches by reach direction, reaches in the same direction can still have different start
and end points on the grid (Figure 4.3a), leading to different posture and muscle activations
which is likely to significantly affect neural activity. Our analysis by reach direction therefore
only represents a coarse categorization of the rich behavioral space, and it remains to be seen
how neural activity and latent trajectories are affected by e.g. posture during the task.

Finally we considered whether any long-timescale latent dimensions could be predictive
of reaction time across trials by reflecting e.g. motivation or engagement with the task. Here
we found that two dimensions had timescales longer than the duration of most reaches with
latent timescales of τ = 2.1 s and τ = 2.0 s while the majority of reaches had durations
between 1 and 2 seconds (Figure B.2c). Intriguingly, the latent state in these dimensions at
target onset was predictive of reaction time with correlations of 0.38 and 0.34 respectively
(Figure B.2d). While the information about reaction time contained in these two dimensions
was largely redundant, it was orthogonal to that encoded by the distance to preparatory state
in the fast dimensions. In particular, a linear model had 18.0% variance explained from
the distance to prep in fast dimensions, 14.7% variance explained from the slowest latent
dimension, and 28.2% when combining these two features which corresponds to 86.5% of
the additive value.

B.3 Task engagement

The experimental recordings were characterized by a period of approximately five minutes
towards the end of the recording session during which the monkey did not participate
actively in the task and the cursor velocity was near-constant at zero (Figure B.3a). For the
decoding analyses, we excluded data from this period since there was little to no behavior to
predict. This period also did not contain any successful reaches, and so was excluded from
the analyses of individual reaches and reaction times in Section 4.3.2, Appendix B.1, and
Appendix B.2.

When analysing neural activity across the periods with and without task participation, we
found that neural dynamics moved to a largely orthogonal subspace as the monkey stopped
engaging with the task (Figure B.3b). Importantly, we were able to simultaneously capture
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B CA

Fig. B.3 Analyses of a period without task participation. (A) Cursor speed over the course
of the recording session. Blue horizontal lines indicate the last succesful trial before and
first succesful trial after a period with no active task participation (blue shading). (B) Latent
similarity matrix as a function of time during the task. The latent dynamics during task
participation occur in a largely orthogonal subspace to the dynamics during the period with
no active task participation. (C) Plot of latent state over time for the latent dimension with
the longest timescale (τ = 2.1 s).

these context-dependent changes as well as movement-specific and preparatory dynamics
(Section 4.3.2) by fitting a single model to the full 30-minute dataset, illustrating the utility
of bGPFA for analyses of neural data during unconstrained behaviors. Indeed when fitting
bGPFA only to the neural data recorded before the monkey stopped participating in the task,
our reach-specific analyses gave qualitatively similar results compared to the models fitted to
the full dataset. This suggests that bGPFA can capture behaviorally relevant dynamics within
individual contexts even when trained on richer datasets with changing contexts.

Finally, we wondered how the neural activity patterns during periods with and without
task participation compared to our previous analyses of latent dimensions predictive of task
engagement (Appendix B.2). Here we found that a long-timescale latent dimension predictive
of reaction times for successful reaches (Figure B.2) also exhibited a prominent change to a
different state as the monkey stopped participating in the task (Figure B.3). This is consistent
with our hypothesis that this latent dimension does indeed capture a feature related to task
engagement which slowly deteriorated during the first 20 minutes of the task followed by
a discrete switch to a state with no engagement in the task. During the period of active
task participation, this latent dimension was also strongly correlated with time within the
session. Indeed, reach number and latent state were both predictive of reaction times, but
with the long-timescale latent trajectory exhibiting a slightly stronger correlation (Pearson
ρ = 0.383 vs. ρ = 0.353 respectively). It is perhaps unsurprising that motivation or task
engagement decreases with time, and it is difficult in this case to tease apart exactly how
motivation vs. time is represented in such latent dimensions. However, based on the strong
and abrupt modulation by task participation, this long timescale latent dimension does appear
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A

Fig. B.4 Neural dimensionality. (A) Participation ratio (Equation B.1) as a function of
temporal offset added to M1 spike times in the primate dataset.

to represent some aspect of engagement with the task beyond being a simple measure of
time.

B.4 Latent dimensionality

In this section we estimate the dimensionality of the primate data as a function of the offset
between M1 and S1 spike times using participation ratios computed on the basis of PCA.
The participation ratio is defined as

PR =

(
∑

i
λi

)2

/∑
i

λ
2
i , (B.1)

where λi is the ith eigenvalue of the covariance matrix YYYYYY T . Here we find that the dimension-
ality of the data is minimized for a spike time shift of 75-100 ms (Figure B.4). This suggests
that the neural recordings can be explained more concisely when taking into account the
offset in decoding between M1 and S1 which is consistent with the increased log likelihood
after shifting the M1 spikes (Section 4.3.2). We observe a similar trend when considering
the number of dimensions retained by bGPFA (21.9±0.30 vs 22.3±0.38 across 10 model
fits with and without a 100 ms shift of M1 spiketimes), although the difference is small
enough to not be statistically significant in this case. However, it is worth noting that bGPFA
explains the data with only a handful of latent dimensions, and this is much lower than the
dimensionality of 127-129 estimated by the participation ratio which tends to increase for
noisier datasets.
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B.5 Parameterizations of approximate GP posterior

In this section, we compare different forms of the variational posterior q(XXX) discussed in
Section 4.2.2. For factorizing likelihoods, the optimal posterior takes the form

q(xxxd) ∝ p(xxx)∏
t
N (xt |gt ,vt), (B.2)

where gt and vt are variational parameters [51]. Equation B.2 might therefore seem to
be an appropriate form of the variational distribution q(XXX). However, this formulation
is computationally expensive and the likelihood p(YYY |XXX) does not factorize across time in
bGPFA.

Instead, we therefore consider approximate parameterizations of the form

q(xxxd) =N (µµµd,ΣΣΣd) (B.3)

µµµd = KKK
1
2
d νννd (B.4)

ΣΣΣd = KKK
1
2
d ΛΛΛdΛΛΛ

T
d KKK

1
2
d , (B.5)

where KKK
1
2
d is a matrix square root of the prior covariance matrix KKKd and νννd ∈ RT is a vector

of variational parameters. This formulation simplifies the KL divergence term for each latent
dimension in Equation 4.6 from

KL[q(xxxd)||p(xxxd|ttt)] =
1
2
(
Tr(KKK−1

d ΣΣΣd)+ log |KKKd|− log |ΣΣΣd|+µµµ
T
d KKK−1

d µµµd−T
)

(B.6)

to
KL[q(xxxd)||p(xxxd|ttt)] =

1
2
(
∥ΛΛΛd∥2

F−2log |ΛΛΛd|+ ||νννd||2−T
)
. (B.7)

In the following, we drop the ·d subscript to remove clutter, and we use the notation
ΨΨΨ = diag(ψ1, ...,ψT ) with positive elements ψt > 0, to denote a positive definite diagonal
matrix.

B.5.1 Square root of the prior covariance

For a stationary prior covariance KKK, we can directly parameterize KKK
1
2 by taking the square

root of k(·, ·) in the Fourier domain and computing the inverse Fourier transform. For the
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RBF kernel used in this work we get

k(ti, t j) = exp
(
−
(ti− t j)

2

2τ2

)
(B.8)

k
1
2 (ti, t j) =

(
2
π

) 1
4
(

δ t
τ

) 1
2

exp
(
−
(ti− t j)

2

τ2

)
. (B.9)

In this expression, δ t is the time difference between consecutive data points, we have assumed
a signal variance of 1 in the prior kernel, and we note that our parameterization only gives rise
to the exact matrix square root of the RBF kernel in the limit where T ≫ τ . Note that this is
the case in the present work since T ≈ 30 minutes is much larger than the longest timescales
learned by bGPFA (τ ≈ 2 s). For most experiments in neuroscience, observations are binned
such that time is on a regularly spaced grid and our parameterization can be applied directly.
In other cases, kernel interpolation should first be used to construct a covariance matrix with
Toeplitz structure [76, 75].

B.5.2 Parameterization of the posterior covariance

We now proceed to describe the various parameterizations of ΛΛΛ whose performance is
compared in Figure B.5. Other parameterizations are explored in [10].

Diagonal ΛΛΛ We parameterize each latent dimension with ΛΛΛ = ΨΨΨ. This gives rise to a KL
term:

2KL[q(xxx)||p(xxx)] = ∑
t

ψ
2
t + ||ννν ||2−T −2∑

t
logψt . (B.10)

We can compute ΛΛΛvvv in linear time since ΛΛΛ is diagonal which allows for cheap (differentiable)
sampling:

ηηη ∼N (0, III) (B.11)

sample = KKK
1
2 (ΛΛΛηηη +ννν), (B.12)

where the multiplication by KKK
1
2 is done in O(T logT ) time in the Fourier domain.

Circulant ΛΛΛ We parameterize each latent dimension with ΛΛΛ = ΨΨΨCCC. Here, CCC ∈ RT×T is a
positive definite circulant matrix with 1+ T

2 (integer division) free parameters, which we
parameterize directly in the Fourier domain as ĉcc = rfft(ccc) ∈ R1+T/2 where ccc is the first
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column of CCC with ĉcc≥ 0 elementwise. We compute the KL as

2KL[q(xxx)||p(xxx)] =
(

∑
t

c2
t

)(
∑
t

ψ
2
t

)
+ ||ννν ||2−T −2∑

t
logψt−2log |CCC| (B.13)

log |CCC|= log ĉ1 + log ĉ T
2 +1 +2

T
2

∑
i=2

log ĉi (even T) (B.14)

log |CCC|= log ĉ1 +2

T+1
2

∑
i=2

log ĉi (odd T), (B.15)

where ccc = irfft(ĉcc). We can sample differentiably in O(T logT ) time by computing

ηηη ∼N (0, III) (B.16)

CCCηηη = irfft(ĉcc⊙ rfft(ηηη)) (B.17)

sample = KKK
1
2 (ΨΨΨCCCηηη +ννν), (B.18)

where ⊙ denotes the complex element-wise product.

Low-rank ΛΛΛ We let QQQ ∈QT×r with QQQT QQQ = IIIr and write

ΛΛΛ = IIIT −QQQΨΨΨQQQT , (B.19)

where we now constrain 0 < ψi < 1 to maintain the positive definiteness of ΛΛΛ. Technically,
keeping QQQ on the Stiefel manifold (i.e. QQQT QQQ = IIIr) is done by (differentiably) computing the
QR decomposition of a T × r matrix of free parameters.

Circulant inverse ΛΛΛ We let CCC be a circulant positive definite matrix as above and parame-
terize

ΛΛΛ = (III +ΨΨΨCCCΨΨΨ)−1 . (B.20)

Computing ΛΛΛvvv products is done using the conjugate gradients algorithm, taking advantage of
fast products with ΨΨΨ and CCC; the same algorithm is also used to stochastically estimate log |ΛΛΛ|
and its gradient (see the appendix of 60).

Toeplitz inverse ΛΛΛ This proceeds just as for the circulant inverse form, with the circulant
matrix CCC replaced by an arbitrary Toeplitz matrix (also exploiting fast TTT vvv products):

ΛΛΛ = (III +ΨΨΨTTT ΨΨΨ)−1 . (B.21)
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Fig. B.5 Comparisons of different
forms of the approximate posterior
q(xxx). (A) Synthetic data (orange dots)
plotted together with the exact posterior
(black) as well as the variational posteri-
ors inferred by each whitened parameteri-
zation. The solid lines denote the (approx-
imate) posterior means, and shaded areas
indicate ±1 posterior standard deviations.
(B) Slice through the posterior covariance
(Covx∼q(x)

[
xT/2,xt

]
) for the true poste-

rior (top and black dotted lines) and the
approximate methods. Each method has
different characteristics and the circulant
parameterization again provides a good
qualitative fit at very low computational
cost. (C) We defined the ‘ELBO gap’ of
each method as ELBO−LL where LL is
the true data log likelihood. We plotted
this against the time per gradient evalua-
tion and found that the circulant param-
eterization achieved high accuracy with
cheap gradients.

B.5.3 Numerical comparisons between different parameterizations

To compare these parameterizations, we generated a synthetic dataset (Figure B.5a, orange
dots) over T = 1000 time bins by drawing samples {y1, . . . ,yT} as yt = xt +σtξt where
ξ (t)∼N (0,1) with non-stationary σt growing linearly from 0.1 to 0.5 over the whole range
0 ≤ t < T , and xi ∼ N (0,KKK1/2KKK1/2) with KKK1/2 given by Equation B.9. We fixed these
generative parameters to their ground truth and optimized the ELBO w.r.t. the variational
parameters in this simple regression setting. We found that all of the parameterizations
accurately recapitulated the GP posterior mean (Figure B.5a). However, the degree to
which they captured the non-stationary posterior covariance and data log likelihood varied
between methods (Figure B.5b-c). To quantify this, we computed the difference between
the asymptotic ELBO of each method and the exact log marginal likelihood. This ELBO
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gap was small for the circulant parameterization, the inverse methods, and the low rank
parameterization with sufficiently high r. Although the circulant parameterization did not
fully capture the non-stationary aspect of the posterior variance, this did not affect the ELBO
gap substantially; importantly, however, the circulant parameterization was more than an
order of magnitude faster per gradient evaluation than the other methods with comparable
accuracy (Figure B.5c). For these reasons as well as the good performance in a latent
variable setting (Section 4.3.1, Section 4.3.2), we used the circulant parameterization for all
experiments.

B.6 Relation between variational posterior over F and true
posterior

Here we show that our parameterization of q( fff n) includes the exact posterior in the case of
Gaussian noise.

When the noise model is Gaussian (i.e., p(yyyn| fff n) =N (yyy| fff n,σ
2
n I)), we can compute the

posterior over fff ∗n = fn(XXX⋆) at locations XXX⋆ in closed form:

fff ∗n|XXX⋆,XXX ,yyyn ∼N (XXX⋆T SSS2XXXK̂KK
−1

yyyn,XXX
⋆T SSS(III−XXXK̂KK

−1
XXXT )SSSXXX⋆) (B.22)

where K̂KK = XXXT SSS2XXX +σ2
n III. Note that the posterior is low-rank as the rank of III−XXXK̂KK

−1
XXXT

is at most D. This means that when we do variational inference, we can parameterize our
approximate posterior as:

q( fff ∗n) =N ( fff |XXX⋆T SSSνννn,XXX⋆T SSSLLLnLLLT
n SSSXXX⋆) (B.23)

where νννn ∈ RD and LLLn ∈ RD×D are the parameters of the approximate posterior (Sec-
tion 4.2.2). We see that this parameterization is exact when:

νννn = SSSXXXK̂KK
−1

yyyn (B.24)

LLLnLLLT
n = III−XXXK̂KK

−1
XXXT . (B.25)

Note that the right-hand side of Equation B.25 is guaranteed to be positive definite
because the true posterior must be positive definite. Importantly, for this parameterization,
the KL term in Equation 4.11 simplifies to

KL(q( fff n|XXX)||p( fff n|XXX)) = KL(N (νννn,LLLnLLLT
n )||N (0, III)), (B.26)
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which is independent of XXX and allows us to do efficient inference due to the low dimensionality
of νννn and LLLn.

B.7 Relation between variational posterior over F and SVGP

For general non-Gaussian noise models, the parameterization in Appendix B.6 will no longer
be exact. However, here we show that it is in this case equivalent to a stochastic variational
Gaussian process (SVGP; 27). In SVGP, we choose a variational distribution:

q(uuu) =N (uuu|ZZZT SSSµµµ,ZZZT SSSMMMMMMT SSSZZZ) (B.27)

at inducing points ZZZ ∈ RD×m, where µµµ and MMM are the “whitened” parameters [29]. This
gives an approximate posterior:

q( fff ∗) = Eq(uuu) [p( fff |uuu)] (B.28)

=N ( fff |XXX⋆T SSSΠΠΠzµµµ;XXX⋆T SSSΠΠΠz(MMMMMMT − III)ΠΠΠzSSSXXX⋆) (B.29)

where ΠΠΠzzz = SSSZZZ(ZZZT SSS2ZZZ)−1ZZZT SSS. If we choose m = D inducing points such that ZZZ ∈ RD×D

and make sure ZZZ has full rank, then ΠΠΠz = III and thus

q( fff ∗) =N ( fff |XXX⋆T SSSµµµ,XXX⋆T SSS(MMMMMMT − III)SSSXXX⋆). (B.30)

We recover the parameterization in Section 4.2.2 when

µµµ = ννν and MMMMMMT − III = LLLLLLT . (B.31)

For these more general noise models, the whitened parameterization of q( fff ) still gives rise
to a computationally cheap KL divergence that is independent of XXX as in Equation B.26:

KL(q( fff n|XXX)||p( fff n|XXX)) = KL(N (νννn,LLLnLLLT
n )||N (0, III)). (B.32)

In summary, we have shown that (i) our parameterization of q( fff n) has sufficient flexibility
to learn the true posterior when the noise model is Gaussian (Appendix B.6), and (ii) it is
equivalent to performing SVGP where the locations of the inducing points do not matter
provided that their rank is at least as high as the number of latent dimensions.
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B.8 Automatic relevance determination

Here we briefly consider why introducing a prior over the factor matrix enables automatic
relevance determination. These ideas reflect results by Bishop [7] and in Section 4.3.1.

For simplicity, we will first consider the case of factor analysis where p(XXX)=∏d,tN (xdt ;0,1).
This gives rise to a marginal likelihood (with Gaussian noise) equal to

log p(YYY ) = ∑
t

logN (yyyt ;0,CCCCCCT +ΣΣΣ), (B.33)

where ΣΣΣ = diag(σ2
1 , ...,σ

2
N) is a diagonal matrix of noise parameters. It is in this case quite

clear that the optimal marginal likelihood is a monotonically increasing function of the latent
dimensionality, since any marginal likelihood reachable with a certain rank D is also reachable
with a larger rank D′ > D; increasing D can only increase model flexibility. We could in this
case threshold the magnitude of the columns of CCC to subselect more ‘informative’ dimensions,
but this is not inherently different from putting an arbitrary cut-off on the variance explained
in PCA, and there is no Bayesian “Occam’s razor” built into the method [45].

Consider now the case where we put a unit Gaussian prior on cnd . In this case {cnd} are
no longer parameters of the model, but rather latent variables to be inferred which intuitively
should reduce the risk of overfitting. To expand on this intuition, consider the ELBO (c.f.
Section 4.2.1) that results from introducing such a prior over cnd:

log p(YYY )≥ Eq(XXX) [log p(YYY |XXX)]−∑
d,t

KL [q(xdt)||N (0,1)] (B.34)

log p(YYY |XXX) = ∑
n

logN (yyyn;0,XXXT XXX +σnIII). (B.35)

Here we see that if a dimension d is truly uninformative, it should have xdt = 0 ∀t to
avoid contributing noise to the likelihood term via XXXT XXX . However, reducing this noise
will increase the prior KL term, driving it to infinity in the limit of zero noise since the
variational posterior over the dth latent at time t, q(xdt), is in this case a delta function
at zero. Optimizing the ELBO therefore involves a balance between mitigating the noise
induced by XXXT XXX and reducing the KL penalty, with both of these terms contributing to
a decreased ELBO compared to the model without uninformative dimensions. Thus the
prior over cnd counteracts the overfitting that would normally occur when increasing the
latent dimensionality in classical factor analysis, and this Bayesian treatment will lead to a
decrease in the ELBO with increasing dimensionality beyond the optimal D⋆ that is needed
to adequately explain the data.
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Finally let us consider the case where we learn the prior scale of the factor matrix such
that cnd ∼ N (0,s2

d) with sd optimized w.r.t. the ELBO. Critically, the likelihood term now
becomes:

log p(YYY |XXX) = ∑
n

logN (yyyn;0,XXXT SSS2XXX +σnIII). (B.36)

with SSS = diag(s1, . . . ,sD). In this case, adding uninformative dimensions beyond the optimal
D⋆ still cannot increase the ELBO (in the limit of large N). However, letting sd → 0 for
these superfluous dimensions will prevent them from contributing to p(YYY |XXX), thus allowing
q(xdt)→N (0,1) to drive the prior KL term to zero for these dimensions. In this limit, we
recover both the ELBO and the posteriors associated with the D⋆- dimensional model. We
thus have a built-in Occam’s razor which will shave off any uninformative latent dimensions,
and these will be identifiable as dimensions for which sd ≈ 0 and q(xdt)≈N (0,1).

These ideas generalize to GPFA where the posterior over latents will instead approach
the GP prior q(xxxd)≈N (0,KKK) for uninformative dimensions. This corresponds to the limit
of ννν→ 0 and ΨΨΨ→ III in our circulant parameterization in Section 4.2.2 and Appendix B.5. In
all of our simulations, we found a clear clustering of dimensions after training with some
clustered near zero sd , and others clustered with much larger sd (Figure 4.2c and Figure 4.3b).
Note that in practice we do not actively truncate the model by discarding dimensions with
sd ≈ 0 but merely use the terminology to indicate that these dimensions have negligible
contributions to the posterior predictive q(yyyn), as well as to the latent posteriors q(xxxd) for the
dimensions with large sd .

B.9 Most informative dimensions

In this work, we refer to the latent dimensions with the highest values of sd as the ‘most
informative dimensions’. We do this because (i) observing the value of the corresponding
latent xd decreases the variance of the expected distribution of neural activity more as sd

increases, and (ii) the Fisher information of xd increases as sd increases.
To show this, we consider how the distribution over fn (the activity of neuron n) given

cccn (the nth row of CCC) changes when xd (the value of the dth latent) is known, and how this
varies with sd . In the following, we omit the ·n subscript for notational simplicity, and we
note that f , xd and cd are all scalar values. With unknown xd , f is Gaussian with zero mean
and variance Ep(xxx)

[
cccT xxxxxxT ccc

]
= cccT ccc. Thus,

p( f |ccc) =N ( f ;0,cccT ccc) (B.37)
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In contrast, for known xd , we have

p( f |ccc,xd) =N ( f ;cdxd,cccT
−dccc−d), (B.38)

where ccc−d is ccc with the dth element removed. We thus see that the decrease in variance of f
from observing xd is c2

d . Finally we can approximate the process of averaging this quantity
over neurons by noting that cd ∼N (0,s2

d) and marginalising out ccc:

Ep(ccc)[σ
2
f |ccc−σ

2
f |ccc,xd

] = Ep(ccc)[c
2
d] = s2

d, (B.39)

where σ2
f |ccc is the variance of p( f |ccc). Thus, s2

d can be interpreted as the expected decrease in
the variance of the denoised neural activity f when learning the value of the dth latent.

This can also be understood in information-theoretic terms by considering the Fisher
information of the dth latent dimension which is given by

I(xd|ccc) =−Ep( f |xd ,ccc)

[
∂ 2

∂x2
d

log p( f |xd,ccc)
]

(B.40)

=

[
∑

d′ ̸=d
c2

d′

]−1

. (B.41)

To relate this quantity to our prior scale parameters {sd}, we consider the expectation of the
inverse Fisher information:

Ep(ccc)[I(xd|ccc)−1] = ∑
d′ ̸=d

s2
d′. (B.42)

For a given set of latent dimensions [1,D] with corresponding {sd}D
1 , we thus see that the

expected inverse Fisher information is minimized for the dimension with the highest value of
sd . In Figure 4.2 and Figure 4.3 we use sd together with the posterior latent mean parameters
νννd to identify ‘discarded’ dimensions.

B.10 Noise models and evaluation of their expectations

Gaussian The Gaussian noise model is given by

log p(ynt | fnt) =−
1
2

log(2π)− 1
2
(ynt− fnt)

2/σ
2
n , (B.43)
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where σn is a learnable parameter. In this case we can easily compute the expected log-density
under the approximate posterior analytically:

Eq( fnt |XXX) [log p(ynt | fnt)] =−
1
2

(
log(2π)+

(ynt−µnt)
2 +Σntt

σ2
n

)
, (B.44)

where q( fff n|XXX) =N ( fff n; µµµn,ΣΣΣn) and Σntt is the approximate posterior variance of neuron n
at time t (i.e., the t th diagonal element of ΣΣΣn).

Poisson The Poisson noise model is given by

log p(ynt | fnt) = ynt logg( fnt)−g( fnt)− log(ynt!), (B.45)

where g is a link function. If we choose an exponential link function (i.e., g(x) = exp(x)),
we can compute in closed-form the expected log-density of the approximate posterior as:

Eq( fnt |XXX) [log p(ynt | fnt)] = Eq( fnt |XXX) [ynt fnt− exp( fnt)− log(ynt!)] (B.46)

= ynt µnt− exp
(

µnt +
1
2

Σntt

)
− log(ynt!). (B.47)

For the analyses shown in Figure 4.2c-d, we use the exponential link function.
For general link functions g, we may not be able to evaluate the expected log-density in

closed-form. In this case, we approximate it with Gauss-Hermite quadrature:

Eq( fnt |XXX) [log p(ynt | fnt)]≈
1√
π

kGH

∑
i=1

ωi log p(ynt | f (i)nt ) (B.48)

where

ωi =
2kGH−1kGH!

√
π

kGH
2[HkGH−1(ri)]2

, (B.49)

f (i)nt =
(√

2Σntt

)
ri +µnt , (B.50)

Hk(r) are the physicist’s Hermite polynomials, and ri with i = 1, . . . ,k are roots of Hk(r).
For a given order of approximation kGH, we can evaluate both ωi and ri using standard
numerical software packages such as Numpy. In practice, we find that kGH = 20 gives an
accurate approximation to the expected log-density under the approximate posterior. Note
that we could also estimate the expectation over q( fnt) for general link functions g using a
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Monte Carlo estimate, but we use Gauss-Hermite quadrature in this work since it has a lower
computational cost and is not stochastic.

Negative binomial The negative binomial noise model is given by

log p(ynt | fnt) = log
(

ynt +κn−1
ynt

)
+κn log(1−g( fnt))+ y log(g( fnt)) , (B.51)

where g( fnt) denotes the probability of success in a Bernoulli trial. Here, each success
corresponds to the emission of one spike in bin t, and thus p(ynt | fnt) is the distribution over
the number of successful trials (spikes) before reaching κn failed trials. The link function
g(x) : R→ [0,1) maps fnt to a real number between 0 and 1. In practice we use a sigmoid
link-function g(x) = 1/(1+ exp(−x)).

In this model, κn is a learnable parameter which effectively modulates the overdispersion
of the distribution since the mean and variance of p(ynt | fnt) are given by:

µNB =
g( fnt)κn

1−g( fnt)
(B.52)

σ
2
NB = µNB

(
1+

µNB

κn

)
. (B.53)

This is the parameter which we compare between the ground truth and trained models in
Figure 4.2, and we see that the Poisson model is recovered for neuron n as κn→ ∞.

For the negative binomial noise model we cannot compute the expected log-density in
closed-form. We instead approximate this expectation using Gauss-Hermite quadrature as
described above.

B.11 Implementation

In this section we provide pseudocode for bGPFA (Algorithm 2) with the circulant parame-
terization for q(XXX) and discuss other implementation details.

Note that we need to sample the full trajectory xxxd before subsampling for each batch due
to the correlations introduced by KKK. In practice, we run the optimization for 2500 passes over
the full data which we found empirically lead to convergence of the ELBO and parameters.
We used M = 20 Monte Carlo samples for each update step when fitting the synthetic data in
Figure 4.2 and M = 10 for the primate data. For all models, q(XXX) was initialized at the prior
p(XXX). The prior scale parameters were initialized as sd = ρ||cccd||22 where cccd is the dth row of
the factor matrix CCC found by factor analysis [56] and ρ = 3 was found empirically to give
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Algorithm 2: Bayesian GPFA with automatic relevance determination
1 input: data YYY ∈ RN×T , maximum latent dimensionality D, # of Monte Carlo samples

M, learning rate γ

2 parameters: θ = {{sd}D
1 ,{τd}D

1 ,{νννd}D
1 ,{c̃ccd}D

1 ,{ΨΨΨd}D
1 ,{LLLn}N

1 ,{ν̂ννn}N
1 ,{σ̂n or κn}N

1 }
3

4 while not converged do
5 ∇L← 0
6 for batch in batches do
7

8 %For each of M Monte Carlo samples
9 for m = 1 : M do

10

11 % sample from approximate posterior q(XXX)
12 for d = 1 : D do
13 ηηη

(m)
d ∼N (000, IIIT )

14 kkk
1
2
d = σ 1

2 ,d
exp

(
− (ttt−t0)2

2τ2
1
2 ,d

)
// single column of KKK

15 xxx(m)
d = Toeplitz_mult(kkk

1
2
d ,νννd +CCCηηη

(m)
d ) // Appendix B.5

16 XXXm = [xxx(m)
1 ; . . . ;xxx(m)

d ]
17

18 % compute q(FFF) and Eq(FFF) [p(YYY |FFF)]

19 µ̂µµn = XXX⊤m ν̂ννn // variational mean
20 σ̂σσ

2
n = diag

(
XXXT

mSSSLLLnLLL⊤n SSSXXXm
)

21 log p(m)
Y F = ∑n,t∈batchEN ( fnt ;µ̂nt ,σ̂2

nt)
[log p(ynt | fnt)] // Appendix B.10

22

23 % compute KL terms
24 KLx =

size(batch)
size(data) ∑d KL[q(xxxd)||p(xxxd)] // Appendix B.5

25 KL f =
size(batch)
size(data) ∑n KL[q( fff n)||p( fff n)] // Appendix B.6

26

27 % update gradient with batch gradient

28 L̃= 1
M ∑m log p(m)

Y F −KLx−KL f

29 ∇L← ∇L+∇L̃
30

31 % update parameters based on total gradients (we use Adam in practice)
32 θ ← θ + γ∇L
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good convergence on the primate data. When using a Gaussian noise model, noise variances
were initialized as the σ2

n found by factor analysis. For negative binomial noise models, we
initialized κn =

1
T ∑t ynt which matches the mean of the distribution to the data for f = 0.

Length scales τ were initialized at 200 ms for all latent dimensions for the primate data and
at ≈ 80% of the ground truth value for the synthetic data. Synthetic data was fitted on a
single GPU with 8GB RAM. Primate data was fitted on a single GPU with 12GB RAM and
took approximately 30 hours for a single model fit to the full dataset at 25 ms resolution. We
also note that when fitting data with a Gaussian noise model, we mean-subtracted the original
data, whereas we include explicit mean parameters in the Poisson and negative binomial
noise models since they are non-linear (c.f. Appendix B.10).

B.12 Cross-validation and kinematic decoding

In this section we describe the procedure for computing cross-validated errors in Figure 4.2
and performing kinematic decoding analyses in Figure 4.3. In these analyses, expectations
over XXX were computed using the posterior mean of q(XXX) and expectations over FFF were
computed using Monte Carlo samples from q(FFF).

Prediction errors To compute cross-validated errors we divide the time points into a
training and a test set, Ttrain = {t1, t2, ..., tTtrain} and Ttest = {tTtrain+1, ...,T}, and similarly for
the neurons Ntrain and Ntest . We also define Ttot = Ttrain

⋃
Ttest and Ntot = Ntrain

⋃
Ntest .

We first fit the generative parameters θgen of each model to data from all the neurons at the
training time points using variational inference:

θgen = argmaxθgen

[
p(YYYNtot ,Ttrain|θgen)

]
. (B.54)

We then fix the generative parameters and infer a distribution over latents from the training
neurons recorded at all time points using a second pass of variational inference:

q(XXX1:D,Ttot |YYYNtrain,Ttot ,θgen)≈ p(XXX1:D,Ttot |YYYNtrain,Ttot ,θgen). (B.55)

Finally we use the inferred latent states and generative parameters to predict the activity of
the test neurons at the test time points

ŶYYNtest ,Ttest =
∫

YYY p(YYYNtest ,Ttest |XXX1:D,Ttest ,θgen)q(XXX1:D,Ttest |YYYNtrain,Ttot ,θgen)dXXX1:D,Ttest (B.56)
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This allows us to compute a cross-validated predictive mean squared error as

ε =
1

|Ntest | |Ttest |
||ŶYYNtest ,Ttest −YYYNtest ,Ttest ||

2
2. (B.57)

Kinematic decoding For kinematic decoding analyses, we only considered the latents and
behavior prior to a period of approximately 5 minutes where the monkey disengaged from
the task (the first 1430 seconds; Appendix B.3). Cursor positions in the x and y directions
were first fitted with cubic splines and velocities extracted as the first derivative of these
splines. To evaluate kinematic decoding performance, we followed Keshtkaran et al. [38]
and computed the expected activity of all neurons at all time points under our model:

ŶYY =
∫

YYY p(YYY |FFF)q(FFF |XXX)q(XXX |ttt)dXXXdFFF . (B.58)

This can be viewed as the first non-linear step of a decoding model from the latent states
XXX . We then performed 10-fold cross-validation where 90% of the data was used to fit a
ridge regression model which was tested on the held-out 10% of the data. The regularization
strength was determined using 10-fold cross-validation on the 90% training data. The
predictive performance was computed as the mean across the 10 folds. Models were fitted
and evaluated independently for the hand x and y velocities, and the final performance
was computed as the mean variance accounted for across these two dimensions. Results in
Section 4.3.2 are reported as mean ± std across 10 different splits of the data into folds used
for cross-validation.
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